[Frontière des composantes de Fatou polynômiales]
We prove that, for a polynomial, every bounded Fatou component, with the exception of Siegel disks, has for boundary a Jordan curve.
Nous montrons que le bord de toute composante de Fatou bornée d' un polynôme, hormis les disques de Siegel, est une courbe de Jordan.
Accepté le :
Publié le :
Roesch, Pascale 1 ; Yin, Yongcheng 2
@article{CRMATH_2008__346_15-16_877_0,
author = {Roesch, Pascale and Yin, Yongcheng},
title = {The boundary of bounded polynomial {Fatou} components},
journal = {Comptes Rendus. Math\'ematique},
pages = {877--880},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {15-16},
doi = {10.1016/j.crma.2008.06.004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.06.004/}
}
TY - JOUR AU - Roesch, Pascale AU - Yin, Yongcheng TI - The boundary of bounded polynomial Fatou components JO - Comptes Rendus. Mathématique PY - 2008 SP - 877 EP - 880 VL - 346 IS - 15-16 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.06.004/ DO - 10.1016/j.crma.2008.06.004 LA - en ID - CRMATH_2008__346_15-16_877_0 ER -
%0 Journal Article %A Roesch, Pascale %A Yin, Yongcheng %T The boundary of bounded polynomial Fatou components %J Comptes Rendus. Mathématique %D 2008 %P 877-880 %V 346 %N 15-16 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.06.004/ %R 10.1016/j.crma.2008.06.004 %G en %F CRMATH_2008__346_15-16_877_0
Roesch, Pascale; Yin, Yongcheng. The boundary of bounded polynomial Fatou components. Comptes Rendus. Mathématique, Tome 346 (2008) no. 15-16, pp. 877-880. doi: 10.1016/j.crma.2008.06.004
[1] J. Kahn, M. Lyubich, The quasi-additivity law in conformal geometry, Ann. of Math., in press
[2] Real laminations and the topological dynamics of complex polynomials, Adv. Math., Volume 184 (2004), pp. 207-267
[3] Rigidity for real polynomials, Ann. of Math., Volume 165 (2007), pp. 749-841
[4] C.L. Petersen, P. Roesch, Parabotools, manuscript
[5] Proof of the Branner–Hubbard conjecture on Cantor Julia sets (preprint) | arXiv
[6] Cubic polynomials with a parabolic point (preprint) | arXiv
Cité par Sources :





