We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures.
Nous proposons une nouvelle méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson.
Accepted:
Published online:
@article{CRMATH_2008__346_13-14_779_0, author = {Bouleau, Nicolas}, title = {Error calculus and regularity of {Poisson} functionals: the lent particle method}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--782}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.05.020/} }
TY - JOUR AU - Bouleau, Nicolas TI - Error calculus and regularity of Poisson functionals: the lent particle method JO - Comptes Rendus. Mathématique PY - 2008 SP - 779 EP - 782 VL - 346 IS - 13-14 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.05.020/ DO - 10.1016/j.crma.2008.05.020 LA - en ID - CRMATH_2008__346_13-14_779_0 ER -
%0 Journal Article %A Bouleau, Nicolas %T Error calculus and regularity of Poisson functionals: the lent particle method %J Comptes Rendus. Mathématique %D 2008 %P 779-782 %V 346 %N 13-14 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.05.020/ %R 10.1016/j.crma.2008.05.020 %G en %F CRMATH_2008__346_13-14_779_0
Bouleau, Nicolas. Error calculus and regularity of Poisson functionals: the lent particle method. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 779-782. doi : 10.1016/j.crma.2008.05.020. https://www.numdam.org/articles/10.1016/j.crma.2008.05.020/
[1] Analysis and geometry on configuration spaces, J. Funct. Anal., Volume 154 (1998) no. 2, pp. 444-500
[2] Error Calculus for Finance and Physics: The Language of Dirichlet Forms, De Gruyter, 2003
[3] Dirichlet Forms and Analysis on Wiener Space, De Gruyter, 1991
[4] A criterion of density for solutions of Poisson-driven SDEs, Probab. Theory Relat. Fields, Volume 118 (2000), pp. 406-426
[5] Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps, Stochastic Process. Appl., Volume 116 (2006), pp. 1743-1769
[6] Construction of diffusions on configuration spaces, Osaka J. Math., Volume 37 (2000), pp. 273-314
[7] Anticipative calculus for the Poisson process based on the Fock space, Sém. Probabilités XXIV, Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 154-165
[8] On the existence of smooth densities for jump processes, Probab. Theory Relat. Fields, Volume 105 (1996), pp. 481-511
[9] A pointwise equivalence of gradients on configuration spaces, C. R. Acad. Sci. Paris, Volume 327 (1998), pp. 677-682
[10] Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl., Volume 117 (2007), pp. 165-187
Cited by Sources: