[Un cas de densité dans ]
Given two compact Riemannian manifolds without boundary and , we show that maps which are smooth except on finitely many points are dense in . If, in addition, is trivial, then is dense in .
On considère deux variétés riemaniennes compactes sans bord et . Quand , on montre que les fonctions lisses sauf en un nombre fini de points sont denses dans . Si la variété N vérifie , alors est dense dans .
Publié le :
Bousquet, Pierre 1 ; Ponce, Augusto C. 2 ; Van Schaftingen, Jean 3
@article{CRMATH_2008__346_13-14_735_0,
author = {Bousquet, Pierre and Ponce, Augusto C. and Van Schaftingen, Jean},
title = {A case of density in $ {W}^{2,p}(M;N)$},
journal = {Comptes Rendus. Math\'ematique},
pages = {735--740},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {13-14},
doi = {10.1016/j.crma.2008.05.006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.05.006/}
}
TY - JOUR
AU - Bousquet, Pierre
AU - Ponce, Augusto C.
AU - Van Schaftingen, Jean
TI - A case of density in $ {W}^{2,p}(M;N)$
JO - Comptes Rendus. Mathématique
PY - 2008
SP - 735
EP - 740
VL - 346
IS - 13-14
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2008.05.006/
DO - 10.1016/j.crma.2008.05.006
LA - en
ID - CRMATH_2008__346_13-14_735_0
ER -
%0 Journal Article
%A Bousquet, Pierre
%A Ponce, Augusto C.
%A Van Schaftingen, Jean
%T A case of density in $ {W}^{2,p}(M;N)$
%J Comptes Rendus. Mathématique
%D 2008
%P 735-740
%V 346
%N 13-14
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2008.05.006/
%R 10.1016/j.crma.2008.05.006
%G en
%F CRMATH_2008__346_13-14_735_0
Bousquet, Pierre; Ponce, Augusto C.; Van Schaftingen, Jean. A case of density in $ {W}^{2,p}(M;N)$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 735-740. doi: 10.1016/j.crma.2008.05.006
[1] A characterization of maps in which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 7 (1990), pp. 269-286
[2] The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 (1991), pp. 153-206
[3] A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds, Orsay, 1990 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 332 (1990), pp. 15-23
[4] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[5] P. Bousquet, A.C. Ponce, J. Van Schaftingen, Strong density in , in preparation
[6] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986), pp. 649-705
[7] Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.), 1 (1995), pp. 197-263
[8] Topology of Sobolev mappings. II, Acta Math., Volume 191 (2003), pp. 55-107
[9] Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 413-436 (In honor of Haïm Brezis)
[10] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., Volume 18 (1983), pp. 253-268
Cité par Sources :





