[Marches au hasard et l'expansion en ]
Let be a set of elements of generating a Zariski dense subgroup of and let p be a sufficiently large prime. Consider the family of Cayley graphs , where we vary n. Then forms an expander family.
Soit un sous-ensemble de engendrant un sous-groupe de Zariski dense. On considère les graphes de Cayley , òu l'on varie n. Alors forment une famille d'expanseurs.
Publié le :
Bourgain, Jean 1 ; Gamburd, Alex 1
@article{CRMATH_2008__346_11-12_619_0,
author = {Bourgain, Jean and Gamburd, Alex},
title = {Random walks and expansion in $ {\mathrm{SL}}_{d}(\mathbb{Z}/{p}^{n}\mathbb{Z})$},
journal = {Comptes Rendus. Math\'ematique},
pages = {619--623},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {11-12},
doi = {10.1016/j.crma.2008.04.006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.04.006/}
}
TY - JOUR
AU - Bourgain, Jean
AU - Gamburd, Alex
TI - Random walks and expansion in $ {\mathrm{SL}}_{d}(\mathbb{Z}/{p}^{n}\mathbb{Z})$
JO - Comptes Rendus. Mathématique
PY - 2008
SP - 619
EP - 623
VL - 346
IS - 11-12
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2008.04.006/
DO - 10.1016/j.crma.2008.04.006
LA - en
ID - CRMATH_2008__346_11-12_619_0
ER -
%0 Journal Article
%A Bourgain, Jean
%A Gamburd, Alex
%T Random walks and expansion in $ {\mathrm{SL}}_{d}(\mathbb{Z}/{p}^{n}\mathbb{Z})$
%J Comptes Rendus. Mathématique
%D 2008
%P 619-623
%V 346
%N 11-12
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2008.04.006/
%R 10.1016/j.crma.2008.04.006
%G en
%F CRMATH_2008__346_11-12_619_0
Bourgain, Jean; Gamburd, Alex. Random walks and expansion in $ {\mathrm{SL}}_{d}(\mathbb{Z}/{p}^{n}\mathbb{Z})$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 619-623. doi: 10.1016/j.crma.2008.04.006
[1] Products of Random Matrices with Applications to Schrödinger Operators, Progress in Probability and Statistics, vol. 8, Birkhäuser, 1985
[2] J. Bourgain, The sum–product theorem with q arbitrary, preprint
[3] Uniform expansion bounds for Cayley graphs of , Ann. of Math., Volume 167 (2008), pp. 625-642
[4] J. Bourgain, A. Gamburd, Expansion and random walks in : I, preprint
[5] J. Bourgain, A. Gamburd, Expansion and random walks in : II, preprint
[6] Sieving and expanders, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 343 (2005), pp. 155-159
[7] J. Bourgain, A. Gamburd, P. Sarnak, Affine linear sieve, expanders, and sum–product, preprint
[8] Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems, Volume 10 (1990), pp. 483-512
[9] Growth and generation in , Ann. of Math., Volume 167 (2008), pp. 601-623
[10] Heegaard genus and property ‘tau’ for hyperbolic 3-manifolds, J. Topol., Volume 1 (2008) no. 1, pp. 152-158
[11] Bounds for multiplicities of automorphic representations, Duke Math. J., Volume 64 (1991), pp. 207-227
[12] T. Tao, Product sets estimates for non-commutative groups, Combinatorica, in press
Cité par Sources :





