[Sémi-gerbes canoniques pour les espaces lagrangiens d'ordre supérieur]
We show that the canonical semispray of a regular Lagrangian of order k is uniquely determined by two associated Cartan–Poincaré one-forms. Equivalently, the canonical semispray is uniquely determined by its canonical presymplectic structure and one of the Cartan–Poincaré one-forms. We prove that this order vector field is determined by a variational problem, for which only the vertical part of the curve is varied.
Nous obtenons que la sémi-gerbe canonique d'un Lagrangien régulier d'ordre k est uniquement déterminée par deux un-formes Cartan–Poincaré associées. Autrement dit, la sémi-gerbe canonique est uniquement déterminée par sa structure présimplectique canonique et par une des une-formes Cartan–Poincaré. Nous prouvons que ce champ de vecteurs d'ordre est déterminée par un problème variationel pour lequel seulement la partie verticale de la courbe varie.
Accepté le :
Publié le :
Bucataru, Ioan 1
@article{CRMATH_2007__345_5_269_0,
author = {Bucataru, Ioan},
title = {Canonical semisprays for higher order {Lagrange} spaces},
journal = {Comptes Rendus. Math\'ematique},
pages = {269--272},
year = {2007},
publisher = {Elsevier},
volume = {345},
number = {5},
doi = {10.1016/j.crma.2007.07.027},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.07.027/}
}
TY - JOUR AU - Bucataru, Ioan TI - Canonical semisprays for higher order Lagrange spaces JO - Comptes Rendus. Mathématique PY - 2007 SP - 269 EP - 272 VL - 345 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.07.027/ DO - 10.1016/j.crma.2007.07.027 LA - en ID - CRMATH_2007__345_5_269_0 ER -
Bucataru, Ioan. Canonical semisprays for higher order Lagrange spaces. Comptes Rendus. Mathématique, Tome 345 (2007) no. 5, pp. 269-272. doi: 10.1016/j.crma.2007.07.027
[1] Higher order differential equations and higher order Lagrangian mechanics, Proc. Camb. Philos. Soc., Volume 99 (1986), pp. 565-587
[2] Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal, C. R. Acad. Sci. Paris, Volume 233 (1951), pp. 598-600
[3] On the general theory of differentiable manifolds with almost tangent structure, Canad. Math. Bull., Volume 8 (1965), pp. 721-748
[4] Generalized Classical Mechanics and Field Theory, North-Holland Publishing Co., Amsterdam, 1985
[5] The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer Academic Publisher, 1997 (FTPH no. 82)
[6] A new look at second order equations and Lagrangian mechanics, J. Phys. A: Math. Gen., Volume 17 (1984) no. 10, pp. 1999-2009
[7] The Lagrange differential geometry, Bull. Acad. Polon. Sci., Volume 24 (1976), pp. 1089-1096
Cité par Sources :





