[Points critiques de l'accélération en ]
We study the variational problem associated to the norm of the angular acceleration for curve variations of constant length. We determine the unit speed closed critical curves with constant slant in .
Nous étudions le problème variationnel associé à la norme de l'accélération angulaire pour des variations de courbe de longueur constante. Nous déterminons les courbes critiques fermées paramétrées par des abscisses curvilignes à pente constante en .
Accepté le :
Publié le :
Arroyo, Josu 1 ; Garay, Óscar J. 1 ; Mencía, José J. 1
@article{CRMATH_2007__345_3_161_0,
author = {Arroyo, Josu and Garay, \'Oscar J. and Menc{\'\i}a, Jos\'e J.},
title = {Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$},
journal = {Comptes Rendus. Math\'ematique},
pages = {161--166},
year = {2007},
publisher = {Elsevier},
volume = {345},
number = {3},
doi = {10.1016/j.crma.2007.06.015},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.06.015/}
}
TY - JOUR
AU - Arroyo, Josu
AU - Garay, Óscar J.
AU - Mencía, José J.
TI - Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$
JO - Comptes Rendus. Mathématique
PY - 2007
SP - 161
EP - 166
VL - 345
IS - 3
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2007.06.015/
DO - 10.1016/j.crma.2007.06.015
LA - en
ID - CRMATH_2007__345_3_161_0
ER -
%0 Journal Article
%A Arroyo, Josu
%A Garay, Óscar J.
%A Mencía, José J.
%T Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$
%J Comptes Rendus. Mathématique
%D 2007
%P 161-166
%V 345
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2007.06.015/
%R 10.1016/j.crma.2007.06.015
%G en
%F CRMATH_2007__345_3_161_0
Arroyo, Josu; Garay, Óscar J.; Mencía, José J. Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$. Comptes Rendus. Mathématique, Tome 345 (2007) no. 3, pp. 161-166. doi: 10.1016/j.crma.2007.06.015
[1] J. Arroyo, O.J. Garay, J.J. Mencía, Unit speed stationary points of the acceleration, Preprint
[2] Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres, Tohoku Math. J., Volume 51 (1999), pp. 177-192
[3] On the geometry of Riemannian cubic polynomials, Diferential Geom. Appl., Volume 15 (2001), pp. 107-135
[4] Dynamics of relativistic particle with Lagrangian dependent on acceleration, J. Math. Phys., Volume 6 (1989), pp. 465-473
[5] Cubic splines on curved spaces, IMA J. Math. Control Inform., Volume 12 (1995), pp. 399-410
[6] Null Riemannian cubics in tension, IMA J. Math. Control Inform., Volume 22 (2005), pp. 477-488
Cité par Sources :





