[Le Masse selon Arnowitz, Deser et Misner]
For asymptotically Euclidean manifolds of order , under the hypothesis that the mass m (according to Arnowitt, Deser and Misner) exists (in particular if the scalar curvature is ⩾0 and integrable), there exists a real number such that on each end (except if the metric is Euclidean).
Pour une variété asymptotiquement euclidienne d'ordre , sous l'hypothèse que la masse m (selon Arnowitt, Deser et Misner) existe (notamment si la courbure scalaire est ⩾0 et intégrable), il existe un réel tel que sur chaque bout (sauf si la métrique est euclidienne).
Accepté le :
Publié le :
Aubin, Thierry 1
@article{CRMATH_2007__345_2_87_0,
author = {Aubin, Thierry},
title = {The {Mass} according to {Arnowitt,} {Deser} and {Misner}},
journal = {Comptes Rendus. Math\'ematique},
pages = {87--91},
year = {2007},
publisher = {Elsevier},
volume = {345},
number = {2},
doi = {10.1016/j.crma.2007.06.004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.06.004/}
}
TY - JOUR AU - Aubin, Thierry TI - The Mass according to Arnowitt, Deser and Misner JO - Comptes Rendus. Mathématique PY - 2007 SP - 87 EP - 91 VL - 345 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.06.004/ DO - 10.1016/j.crma.2007.06.004 LA - en ID - CRMATH_2007__345_2_87_0 ER -
Aubin, Thierry. The Mass according to Arnowitt, Deser and Misner. Comptes Rendus. Mathématique, Tome 345 (2007) no. 2, pp. 87-91. doi: 10.1016/j.crma.2007.06.004
[1] Energy and the criteria for radiation in general relativity, Phys. Rev., Volume 118 (1960), pp. 1100-1104
[2] Coordinate invariance and energy expressions in general relativity, Phys. Rev., Volume 122 (1961), pp. 997-1006
[3] Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, New York, 1998
[4] Sur quelques problèmes de courbure scalaire, J. Func. Anal., Volume 240 (2006), pp. 269-289
[5] Démonstration de la conjecture de la masse positive, J. Func. Anal., Volume 242 (2007), pp. 78-85
[6] Solution complète de la compacité de l'ensemble des solutions de l' équation de Yamabe, J. Func. Anal., Volume 244 (2007), pp. 579-589
[7] The mass of an asymptotically flat manifold, Commun. Pure Appl. Math., Volume 34 (1986), pp. 661-693
[8] The existence of generalized isothermal coordinates for higher dimensional Riemannian manifolds, Trans. Amer. Math. Soc., Volume 324 (1991), pp. 901-920
[9] Conformal normal coordinates, Ann. Global Anal. Geom., Volume 11 (1993), pp. 173-184
[10] The Yamabe problem, Bull. Amer. Math. Soc., Volume 17 (1987), pp. 37-91
[11] The higher dimensional positive mass theorem I, Aug 2006 | arXiv
[12] On Witten's proof of the positive energy theorem, Comm. Math. Phys., Volume 84 (1982), pp. 223-238
[13] Variational theory for the total scalar curvature functional for Riemannian metric and related topics, Topics in Calculus of Variation, Lectures Notes in Math., vol. 1365, Springer, Berlin, 1989
[14] On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys., Volume 65 (1979), pp. 45-76
[15] Proof of the positive masse theorem II, Comm. Math. Phys., Volume 79 (1981), p. 231
[16] A simple proof of the positive energy theorem, Comm. Math. Phys., Volume 80 (1981), pp. 381-402
Cité par Sources :





