[Une nouvelle caractérisation d'une classe des domaines pseudoconvexes en ]
By using the right inverse of the Cauchy–Fueter operator we obtain an explicit integral characterization of a class of pseudoconvex domains in .
En utilisant l'inverse à droite de l'opérateur de Cauchy–Fueter, nous démontrons une caractérisation en forme intégrale d'une classe de domaines pseudoconvexes en .
Accepté le :
Publié le :
Colombo, Fabrizio 1 ; Luna-Elizarrarás, M. Elena 2 ; Sabadini, Irene 1 ; Shapiro, Michael 2 ; Struppa, Daniele C. 3
@article{CRMATH_2007__344_11_677_0,
author = {Colombo, Fabrizio and Luna-Elizarrar\'as, M. Elena and Sabadini, Irene and Shapiro, Michael and Struppa, Daniele C.},
title = {A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {677--680},
year = {2007},
publisher = {Elsevier},
volume = {344},
number = {11},
doi = {10.1016/j.crma.2007.04.014},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.04.014/}
}
TY - JOUR
AU - Colombo, Fabrizio
AU - Luna-Elizarrarás, M. Elena
AU - Sabadini, Irene
AU - Shapiro, Michael
AU - Struppa, Daniele C.
TI - A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$
JO - Comptes Rendus. Mathématique
PY - 2007
SP - 677
EP - 680
VL - 344
IS - 11
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2007.04.014/
DO - 10.1016/j.crma.2007.04.014
LA - en
ID - CRMATH_2007__344_11_677_0
ER -
%0 Journal Article
%A Colombo, Fabrizio
%A Luna-Elizarrarás, M. Elena
%A Sabadini, Irene
%A Shapiro, Michael
%A Struppa, Daniele C.
%T A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$
%J Comptes Rendus. Mathématique
%D 2007
%P 677-680
%V 344
%N 11
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2007.04.014/
%R 10.1016/j.crma.2007.04.014
%G en
%F CRMATH_2007__344_11_677_0
Colombo, Fabrizio; Luna-Elizarrarás, M. Elena; Sabadini, Irene; Shapiro, Michael; Struppa, Daniele C. A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$. Comptes Rendus. Mathématique, Tome 344 (2007) no. 11, pp. 677-680. doi: 10.1016/j.crma.2007.04.014
[1] Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39, Birkhäuser, Boston, 2004
[2] Über einen Hartogs'schen Satz, Comm. Math. Helv., Volume 12 (1939), pp. 75-80
[3] Function Theory of Several Complex Variables, John Wiley & Sons, New York, 1982
[4] Differentiation of the Martinelli–Bochner integrals and the notion of hyperderivability, Math. Nachr., Volume 172 (1995), pp. 211-238
[5] Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions, Rev. Roum. Math. Pures Appl., Volume 31 (1986), pp. 159-161
[6] Complex Clifford analysis and domains of holomorphy, J. Austral. Math. Soc. Ser. A, Volume 48 (1990), pp. 413-433
[7] On the Bergman kernel function in hypercomplex analysis, Acta Appl. Math., Volume 46 (1997), pp. 1-27
Cité par Sources :





