[M-régularité de la surface de Fano]
In this Note we show that the Fano surface in the intermediate Jacobian of a smooth cubic threefold is M-regular in the sense of Pareschi and Popa.
Dans cette Note, nous montrons que la surface de Fano dans la jacobienne intermédiaire d'une hypersurface cubique lisse de dimension trois est M-régulière au sens de Pareschi et Popa.
Accepté le :
Publié le :
Höring, Andreas 1
@article{CRMATH_2007__344_11_691_0,
author = {H\"oring, Andreas},
title = {\protect\emph{M}-regularity of the {Fano} surface},
journal = {Comptes Rendus. Math\'ematique},
pages = {691--696},
year = {2007},
publisher = {Elsevier},
volume = {344},
number = {11},
doi = {10.1016/j.crma.2007.04.008},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.04.008/}
}
TY - JOUR AU - Höring, Andreas TI - M-regularity of the Fano surface JO - Comptes Rendus. Mathématique PY - 2007 SP - 691 EP - 696 VL - 344 IS - 11 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.04.008/ DO - 10.1016/j.crma.2007.04.008 LA - en ID - CRMATH_2007__344_11_691_0 ER -
Höring, Andreas. M-regularity of the Fano surface. Comptes Rendus. Mathématique, Tome 344 (2007) no. 11, pp. 691-696. doi: 10.1016/j.crma.2007.04.008
[1] Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4), Volume 10 (1977) no. 3, pp. 309-391
[2] Les singularités du diviseur Θ de la jacobienne intermédiaire de l'hypersurface cubique dans , Lecture Notes in Math., vol. 947, Springer, Berlin, 1982, pp. 190-208
[3] Sous-variétés spéciales des variétés de Prym, Comp. Math., Volume 45 (1982) no. 3, pp. 357-383
[4] The intermediate Jacobian of the cubic threefold, Ann. of Math. (2), Volume 95 (1972), pp. 281-356
[5] Minimal cohomology classes and Jacobians, J. Algebraic Geom., Volume 4 (1995) no. 2, pp. 321-335
[6] Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4), Volume 4 (1971), pp. 181-192
[7] Regularity on Abelian varieties. I, J. Amer. Math. Soc., Volume 16 (2003) no. 2, pp. 285-302
[8] Generic vanishing and minimal cohomology classes on abelian varieties, 2006 (arXiv:) | arXiv
[9] GV-sheaves, Fourier–Mukai transform, and generic vanishing, 2006 (arXiv:) | arXiv
[10] On subvarieties of abelian varieties, Invent. Math., Volume 62 (1981), pp. 459-479
[11] Abel–Jacobi Isogenies for Certain Types of Fano Threefolds, Mathematical Centre Tracts, vol. 141, Mathematisch Centrum, Amsterdam, 1981
Cité par Sources :





