In this Note we prove that, if the coefficient of a one-dimensional BSDE is assumed to be continuous and of linear growth in , then there exists either one or uncountably many solutions.
Nous prouvons dans cette Note que, si le coefficient d'une EDSR est continu et linéairement croissant en , alors il existe soit une seule solution soit une infinité non dénombrable de solutions.
Accepted:
Published online:
@article{CRMATH_2007__344_6_395_0, author = {Jia, Guangyan and Peng, Shige}, title = {On the set of solutions of a {BSDE} with continuous coefficient}, journal = {Comptes Rendus. Math\'ematique}, pages = {395--397}, publisher = {Elsevier}, volume = {344}, number = {6}, year = {2007}, doi = {10.1016/j.crma.2007.01.022}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2007.01.022/} }
TY - JOUR AU - Jia, Guangyan AU - Peng, Shige TI - On the set of solutions of a BSDE with continuous coefficient JO - Comptes Rendus. Mathématique PY - 2007 SP - 395 EP - 397 VL - 344 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.01.022/ DO - 10.1016/j.crma.2007.01.022 LA - en ID - CRMATH_2007__344_6_395_0 ER -
%0 Journal Article %A Jia, Guangyan %A Peng, Shige %T On the set of solutions of a BSDE with continuous coefficient %J Comptes Rendus. Mathématique %D 2007 %P 395-397 %V 344 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2007.01.022/ %R 10.1016/j.crma.2007.01.022 %G en %F CRMATH_2007__344_6_395_0
Jia, Guangyan; Peng, Shige. On the set of solutions of a BSDE with continuous coefficient. Comptes Rendus. Mathématique, Volume 344 (2007) no. 6, pp. 395-397. doi : 10.1016/j.crma.2007.01.022. https://www.numdam.org/articles/10.1016/j.crma.2007.01.022/
[1] solutions of backward stochastic differential equations, Stochastic Process. Appl., Volume 108 (2003), pp. 109-129
[2] Backward stochastic differential equations and partial differential equation with quadratic growth, Ann. Probab., Volume 28 (2000), pp. 259-276
[3] Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., Volume 34 (1997), pp. 425-430
[4] Adapted solution of a backward stochastic differential equation, System Control Lett., Volume 14 (1990), pp. 55-61
Cited by Sources:
⁎ The authors thank the NSF of China for partial support under grant No. 10131040 and grant No. 10671111.