We establish several inequalities for characteristic functions (Fourier transform of probability densities) in terms of the Fisher information. As applications, we illustrate their significance in estimating the survival probability of a quantum state (Schrödinger wave function).
Nous établissons plusieurs inégalités concernant les fonctions caractéristiques (les transformées de Fourier des densités de probabilité) à l'aide de l'information de Fisher. En application, nous montrons la signification des ces inégalités dans l'estimation de la probabilité de survie d'un état quantique (fonction d'onde de Schrödinger).
Accepted:
Published online:
Zhang, Zhengmin 1
@article{CRMATH_2007__344_5_327_0,
author = {Zhang, Zhengmin},
title = {Inequalities for characteristic functions involving {Fisher} information},
journal = {Comptes Rendus. Math\'ematique},
pages = {327--330},
publisher = {Elsevier},
volume = {344},
number = {5},
year = {2007},
doi = {10.1016/j.crma.2007.01.008},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.01.008/}
}
TY - JOUR AU - Zhang, Zhengmin TI - Inequalities for characteristic functions involving Fisher information JO - Comptes Rendus. Mathématique PY - 2007 SP - 327 EP - 330 VL - 344 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.01.008/ DO - 10.1016/j.crma.2007.01.008 LA - en ID - CRMATH_2007__344_5_327_0 ER -
%0 Journal Article %A Zhang, Zhengmin %T Inequalities for characteristic functions involving Fisher information %J Comptes Rendus. Mathématique %D 2007 %P 327-330 %V 344 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2007.01.008/ %R 10.1016/j.crma.2007.01.008 %G en %F CRMATH_2007__344_5_327_0
Zhang, Zhengmin. Inequalities for characteristic functions involving Fisher information. Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 327-330. doi: 10.1016/j.crma.2007.01.008
[1] Mathematical Methods of Statistics, Princeton University Press, New Jersey, 1946
[2] An Introduction to Probability and its Applications, vol. 2, John Wiley & Sons, New York, 1971
[3] New forms of the time-energy uncertainty relation, Phys. Rev. A, Volume 31 (1985), pp. 2078-2081
[4] The efficiency of some nonparametric competitors of the t-test, Ann. Math. Statist., Volume 27 (1956), pp. 324-335
[5] A strengthened central limit theorem for smooth densities, J. Funct. Anal., Volume 129 (1995), pp. 148-167
[6] Characteristic Functions, Griffin, London, 1970
[7] An inequality for characteristic functions and its applications to uncertainty relations and the quantum Zeno effect, J. Phys. A, Volume 35 (2002), pp. 5935-5941
[8] Estimating the first zero of a characteristic function, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 203-206
[9] On decaying rate of quantum states, Lett. Math. Phys., Volume 71 (2005), pp. 1-11
[10] An extremal problem for Fourier transforms of probabilities, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 293-296
[11] Énergie informationnelle, C. R. Acad. Sci. Paris, Ser. I, Volume 263 (1966), pp. 841-842
Cited by Sources:





