We prove that any p-adic transitive weak repeller is isometrically conjugate to a subshift of finite type where a suitable metric is defined.
Nous prouvons que tout répulseur faible transitif p-adique est isométriquement conjugué à un sous-shift de type fini où une métrique convenable est définie.
Received:
Accepted:
Published online:
DOI:
10.1016/j.crma.2006.12.007
Accepted:
Published online:
Author's affiliations:
Fan, Aihua 1, 2;
Liao, Lingmin 1, 2;
Wang, Yue Fei 3;
Zhou, Dan 2
@article{CRMATH_2007__344_4_219_0, author = {Fan, Aihua and Liao, Lingmin and Wang, Yue Fei and Zhou, Dan}, title = {\protect\emph{p}-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type}, journal = {Comptes Rendus. Math\'ematique}, pages = {219--224}, publisher = {Elsevier}, volume = {344}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2006.12.007}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2006.12.007/} }
TY - JOUR AU - Fan, Aihua AU - Liao, Lingmin AU - Wang, Yue Fei AU - Zhou, Dan TI - p-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type JO - Comptes Rendus. Mathématique PY - 2007 SP - 219 EP - 224 VL - 344 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2006.12.007/ DO - 10.1016/j.crma.2006.12.007 LA - en ID - CRMATH_2007__344_4_219_0 ER -
%0 Journal Article %A Fan, Aihua %A Liao, Lingmin %A Wang, Yue Fei %A Zhou, Dan %T p-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type %J Comptes Rendus. Mathématique %D 2007 %P 219-224 %V 344 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2006.12.007/ %R 10.1016/j.crma.2006.12.007 %G en %F CRMATH_2007__344_4_219_0
Fan, Aihua; Liao, Lingmin; Wang, Yue Fei; Zhou, Dan. p-adic repellers in $ {\mathbb{Q}}_{p}$ are subshifts of finite type. Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 219-224. doi : 10.1016/j.crma.2006.12.007. https://www.numdam.org/articles/10.1016/j.crma.2006.12.007/
[1] An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995
[2] Ultrametric Calculus, Cambridge University Press, 1984
[3] p-adic chaos and random number generation, Experiment Math., Volume 7 (1998) no. 4, pp. 333-342
Cited by Sources: