Partial Differential Equations
Nonlinear Schrödinger equations with potentials vanishing at infinity
Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 903-908.

In this Note, we deal with stationary nonlinear Schrödinger equations of the form

ε2Δu+V(x)u=K(x)up,xRN,
where V,K>0 and p>1 is subcritical. We allow the potential V to vanish at infinity and the competing function K to be unbounded. In this framework, positive ground states may not exist. We prove the existence of at least one positive bound state solution in the semi-classical limit, i.e. for ε0. We also investigate the qualitative properties of the solution as ε0.

Dans cette Note, nous considérons des équations de Schrödinger non linéaires stationnaires du type

ε2Δu+V(x)u=K(x)up,xRN,
V,K>0 et p>1 est sous-critique. Nous considérons un potentiel V qui s'annule éventuellement à l'infini et une fonction de compétition K qui pourrait ne pas être bornée. Dans ce cas, l'existence d'une solution positive d'énergie minimale n'est pas assurée. Nous démontrons l'existence d'au moins une solution positive dans la limite semi-classique, c'est-à-dire pour ε0. Nous étudions également les propriétés qualitatives de cette solution lorsque ε0.

Received:
Published online:
DOI: 10.1016/j.crma.2006.04.011
Bonheure, Denis 1; Van Schaftingen, Jean 1, 2

1 Université catholique de Louvain, Institut de Mathématique pure et appliquée, chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgium
2 Laboratoire d'analyse numérique, Université Pierre et Marie Curie, boîte courrier 187, 75252 Paris cedex 05, France
@article{CRMATH_2006__342_12_903_0,
     author = {Bonheure, Denis and Van Schaftingen, Jean},
     title = {Nonlinear {Schr\"odinger} equations with potentials vanishing at infinity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {903--908},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2006},
     doi = {10.1016/j.crma.2006.04.011},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2006.04.011/}
}
TY  - JOUR
AU  - Bonheure, Denis
AU  - Van Schaftingen, Jean
TI  - Nonlinear Schrödinger equations with potentials vanishing at infinity
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 903
EP  - 908
VL  - 342
IS  - 12
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2006.04.011/
DO  - 10.1016/j.crma.2006.04.011
LA  - en
ID  - CRMATH_2006__342_12_903_0
ER  - 
%0 Journal Article
%A Bonheure, Denis
%A Van Schaftingen, Jean
%T Nonlinear Schrödinger equations with potentials vanishing at infinity
%J Comptes Rendus. Mathématique
%D 2006
%P 903-908
%V 342
%N 12
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2006.04.011/
%R 10.1016/j.crma.2006.04.011
%G en
%F CRMATH_2006__342_12_903_0
Bonheure, Denis; Van Schaftingen, Jean. Nonlinear Schrödinger equations with potentials vanishing at infinity. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 903-908. doi : 10.1016/j.crma.2006.04.011. https://www.numdam.org/articles/10.1016/j.crma.2006.04.011/

[1] Ambrosetti, A.; Badiale, M.; Cingolani, S. Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., Volume 140 (1997), pp. 285-300

[2] Ambrosetti, A.; Felli, V.; Malchiodi, A. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., Volume 7 (2005), pp. 117-144

[3] Ambrosetti, A.; Malchiodi, A.; Ni, W.-M. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys., Volume 235 (2003), pp. 427-466

[4] A. Ambrosetti, A. Malchiodi, D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., submitted for publication

[5] Ambrosetti, A.; Malchiodi, A.; Secchi, S. Multiplicity results for some nonlinear singularly perturbed elliptic problems on RN, Arch. Rational Mech. Anal., Volume 159 (2001), pp. 253-271

[6] D. Bonheure, J. Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, preprint

[7] Byeon, J.; Wang, Z.Q. Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., Volume 165 (2002) no. 4, pp. 295-316

[8] del Pino, M.; Felmer, P. Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var., Volume 4 (1996), pp. 121-137

[9] del Pino, M.; Felmer, P. Semi classical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997) no. 1, pp. 245-265

[10] del Pino, M.; Felmer, P. Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., Volume 324 (2002) no. 1, pp. 1-32

[11] Floer, A.; Weinstein, A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., Volume 69 (1986), pp. 397-408

[12] Wang, X.; Zeng, B. On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., Volume 28 (1997) no. 3, pp. 633-655

Cited by Sources: