[Une note sur l'anneau de Grothendieck du groupe symétrique]
Let p be a prime number and let n be a non-zero natural number. We compute the descending Loewy series of the algebra , where denotes the ring of virtual ordinary characters of the symmetric group .
Soit p un nombre premier et soit n un entier naturel non nul. Nous calculons la série de Loewy descendante de l'algèbre , où désigne l'anneau des caractères virtuels ordinaires du groupe symétrique .
Accepté le :
Publié le :
Bonnafé, Cédric 1
@article{CRMATH_2006__342_8_533_0,
author = {Bonnaf\'e, C\'edric},
title = {A {Note} on the {Grothendieck} ring of the symmetric group},
journal = {Comptes Rendus. Math\'ematique},
pages = {533--538},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {8},
doi = {10.1016/j.crma.2006.02.028},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2006.02.028/}
}
TY - JOUR AU - Bonnafé, Cédric TI - A Note on the Grothendieck ring of the symmetric group JO - Comptes Rendus. Mathématique PY - 2006 SP - 533 EP - 538 VL - 342 IS - 8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2006.02.028/ DO - 10.1016/j.crma.2006.02.028 LA - en ID - CRMATH_2006__342_8_533_0 ER -
Bonnafé, Cédric. A Note on the Grothendieck ring of the symmetric group. Comptes Rendus. Mathématique, Tome 342 (2006) no. 8, pp. 533-538. doi: 10.1016/j.crma.2006.02.028
[1] Methods of Representation Theory, vol. I, With Applications to Finite Groups and Orders, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1990 (Reprint of the 1981 original)
[2] Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Math. Soc. Monogr. (N.S.), vol. 21, The Clarendon Press, Oxford University Press, New York, 2000
Cité par Sources :





