Algebraic Geometry
Symplectic resolutions for nilpotent orbits (III)
Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 585-588.

We prove that two symplectic resolutions of a nilpotent orbit closures in a simple complex Lie algebra of classical type are related by Mukai flops in codimension 2.

Nous montrons que deux résolutions symplectiques d'une adhérence d'orbite nilpotente dans une algèbre de Lie simple complexe classique sont réliées l'une à l'autre par des flops de Mukai en codimension 2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.02.004
Fu, Baohua 1

1 Laboratoire J. Leray (mathématiques), faculté des sciences, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 03, France
@article{CRMATH_2006__342_8_585_0,
     author = {Fu, Baohua},
     title = {Symplectic resolutions for nilpotent orbits {(III)}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {585--588},
     publisher = {Elsevier},
     volume = {342},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crma.2006.02.004},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2006.02.004/}
}
TY  - JOUR
AU  - Fu, Baohua
TI  - Symplectic resolutions for nilpotent orbits (III)
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 585
EP  - 588
VL  - 342
IS  - 8
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2006.02.004/
DO  - 10.1016/j.crma.2006.02.004
LA  - en
ID  - CRMATH_2006__342_8_585_0
ER  - 
%0 Journal Article
%A Fu, Baohua
%T Symplectic resolutions for nilpotent orbits (III)
%J Comptes Rendus. Mathématique
%D 2006
%P 585-588
%V 342
%N 8
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2006.02.004/
%R 10.1016/j.crma.2006.02.004
%G en
%F CRMATH_2006__342_8_585_0
Fu, Baohua. Symplectic resolutions for nilpotent orbits (III). Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 585-588. doi : 10.1016/j.crma.2006.02.004. https://www.numdam.org/articles/10.1016/j.crma.2006.02.004/

[1] Beauville, A. Symplectic singularities, Invent. Math., Volume 139 (2000), pp. 541-549

[2] Burns, D.; Hu, Y.; Luo, T. HyperKähler manifolds and birational transformations in dimension 4, Vector Bundles and Representation Theory, Columbia, MO, 2002, Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 141-149

[3] Cho, K.; Miyaoka, Y.; Shepherd-Barron, N.I. Characterizations of projective space and applications to complex symplectic manifolds, Higher Dimensional Birational Geometry, Kyoto, 1997, Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1-88

[4] Fu, B. Symplectic resolutions for nilpotent orbits, Invent. Math., Volume 151 (2003), pp. 167-186

[5] Fu, B. Mukai flops and deformations of symplectic resolutions (Math. Z., in press) | arXiv

[6] Hesselink, W. Polarization in the classical groups, Math. Z., Volume 160 (1978), pp. 217-234

[7] Hu, Y.; Yau, S.-T. HyperKähler manifolds and birational transformations, Adv. Theor. Math. Phys., Volume 6 (2002) no. 3, pp. 557-574

[8] Namikawa, Y. Birational geometry of symplectic resolutions of nilpotent orbits | arXiv

[9] Wierzba, J.; Wiśniewski, J. Small contractions of symplectic 4-folds, Duke Math. J., Volume 120 (2003) no. 1, pp. 65-95

Cited by Sources: