[Algèbres de Lie engendrées par des 3-formes]
Let U be a real vector space, B an inner product on U and a 3-form. The 3-form T defines two natural maps, and given by and . We show that is a Lie bracket if and only if is a Lie subalgebra of .
Soit U un espace vectoriel réel, B un produit euclidien sur U et une 3-forme. La 3-forme T permet de définir deux applications, et telles que et . On va démontrer que est un crochet de Lie si et seulement si est une sous-algèbre de Lie de .
Accepté le :
Publié le :
Rohr, Rudolf Philippe 1
@article{CRMATH_2006__342_6_381_0,
author = {Rohr, Rudolf Philippe},
title = {Lie algebras generated by 3-forms},
journal = {Comptes Rendus. Math\'ematique},
pages = {381--385},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {6},
doi = {10.1016/j.crma.2006.01.006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2006.01.006/}
}
TY - JOUR AU - Rohr, Rudolf Philippe TI - Lie algebras generated by 3-forms JO - Comptes Rendus. Mathématique PY - 2006 SP - 381 EP - 385 VL - 342 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2006.01.006/ DO - 10.1016/j.crma.2006.01.006 LA - en ID - CRMATH_2006__342_6_381_0 ER -
Rohr, Rudolf Philippe. Lie algebras generated by 3-forms. Comptes Rendus. Mathématique, Tome 342 (2006) no. 6, pp. 381-385. doi: 10.1016/j.crma.2006.01.006
[1] On the holonomy of connection with skew-symmetric torsion, Math. Ann., Volume 328 (2004) no. 4, pp. 711-748
[2] Sur les nombres de Betti des espaces de groupes clos, C. R. Acad. Sci., Volume 187 (1928), p. 196
[3] The algebraic Theory of Spinors, Columbia University Press, 1954
[4] Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972
[5] Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition , and the -module structure of , Adv. Math., Volume 125 (1997) no. 2, pp. 275-350
Cité par Sources :





