We prove that a singular foliation on a compact manifold admitting an adapted Riemannian metric for which all leaves are minimal must be regular.
Nous prouvons que tout feuilletage singulier sur une variété compacte qu'a une métrique riemannienne feuilletée avec feuilles minimales est régulier.
Accepted:
Published online:
@article{CRMATH_2006__342_1_33_0, author = {Miquel, Vicente and Wolak, Robert A.}, title = {Minimal singular {Riemannian} foliations}, journal = {Comptes Rendus. Math\'ematique}, pages = {33--36}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2005.10.031}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2005.10.031/} }
TY - JOUR AU - Miquel, Vicente AU - Wolak, Robert A. TI - Minimal singular Riemannian foliations JO - Comptes Rendus. Mathématique PY - 2006 SP - 33 EP - 36 VL - 342 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.10.031/ DO - 10.1016/j.crma.2005.10.031 LA - en ID - CRMATH_2006__342_1_33_0 ER -
Miquel, Vicente; Wolak, Robert A. Minimal singular Riemannian foliations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 33-36. doi : 10.1016/j.crma.2005.10.031. https://www.numdam.org/articles/10.1016/j.crma.2005.10.031/
[1] Some remarks on foliations with minimal leaves, J. Differential Geom., Volume 15 (1980), pp. 269-284
[2] Duality and minimality in Riemannian foliations, Comment. Math. Helv., Volume 67 (1992), pp. 17-27
[3] Riemannian Foliations, Progr. Math., vol. 73, Birkhäuser, 1988
[4] Riemannian Geometry, Transl. Math. Monogr., vol. 149, Amer. Math. Soc., 1996
[5] Geometry of Foliations, Bikhäuser, 1997
[6] Lectures on the Geometry of Poisson Manifolds, Progr. Math., vol. 118, Birkhäuser, 1994
Cited by Sources:
⁎ Partly supported by DGI (Spain) and FEDER Project MTM 2004-06015-C02-01, a sabbatical year from the University of Valencia and by Polish KBN grant 2PO3A021 25.