[Un théorème du col sans condition de Palais–Smale]
Given a Hilbert space , Λ an interval of and whose gradient is a compact mapping, we consider a family of functionals of the type:
Étant donné un espace de Hilbert , Λ un intervalle de et dont le gradient est une application compacte, nous considérons une famille de fonctionelle de la forme :
Publié le :
Lucia, Marcello 1
@article{CRMATH_2005__341_5_287_0,
author = {Lucia, Marcello},
title = {A mountain pass theorem without {Palais{\textendash}Smale} condition},
journal = {Comptes Rendus. Math\'ematique},
pages = {287--291},
year = {2005},
publisher = {Elsevier},
volume = {341},
number = {5},
doi = {10.1016/j.crma.2005.07.022},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2005.07.022/}
}
TY - JOUR AU - Lucia, Marcello TI - A mountain pass theorem without Palais–Smale condition JO - Comptes Rendus. Mathématique PY - 2005 SP - 287 EP - 291 VL - 341 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.07.022/ DO - 10.1016/j.crma.2005.07.022 LA - en ID - CRMATH_2005__341_5_287_0 ER -
Lucia, Marcello. A mountain pass theorem without Palais–Smale condition. Comptes Rendus. Mathématique, Tome 341 (2005) no. 5, pp. 287-291. doi: 10.1016/j.crma.2005.07.022
[1] Dual variational methods in critical points theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381
[2] Nonlinear Analysis on Manifolds. Monge–Ampère Equation, Springer-Verlag, Berlin, 1982
[3] Existence results for mean field equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 16 (1999), pp. 653-666
[4] On multivortex solutions in Chern–Simons Gauge theory, Boll. U.M.I. B (8), Volume 1 (1998), pp. 109-121
Cité par Sources :





