[Sur l'équation d'Ishii]
We will study the dynamics of Ishii's equation using its Hamilton–Poisson formulation.
On va étudier la dynamique de l'équation de Ishii en utilisant une réalisation Hamilton–Poisson de cette équation.
Accepté le :
Publié le :
Birtea, Petre 1 ; Puta, Mircea 1
@article{CRMATH_2005__341_2_107_0,
author = {Birtea, Petre and Puta, Mircea},
title = {On {Ishii's} equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {107--111},
year = {2005},
publisher = {Elsevier},
volume = {341},
number = {2},
doi = {10.1016/j.crma.2005.06.010},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2005.06.010/}
}
TY - JOUR AU - Birtea, Petre AU - Puta, Mircea TI - On Ishii's equation JO - Comptes Rendus. Mathématique PY - 2005 SP - 107 EP - 111 VL - 341 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.06.010/ DO - 10.1016/j.crma.2005.06.010 LA - en ID - CRMATH_2005__341_2_107_0 ER -
Birtea, Petre; Puta, Mircea. On Ishii's equation. Comptes Rendus. Mathématique, Tome 341 (2005) no. 2, pp. 107-111. doi: 10.1016/j.crma.2005.06.010
[1] Integrability and Nonintegrability of Dynamical System, Adv. Ser. Nonlinear Dynam., vol. 19, World Scientific, 2001
[2] Painleve property and algebraic integrability of single variable ordinary differential equations with dominants, Progr. Theor. Phys., Volume 84 (1990), pp. 386-391
[3] Elliptic Functions and Applications, Appl. Math. Sci., vol. 80, Springer, 1989
[4] Symplectic Geometry and Analytical Mechanics, Reidel, 1987
Cité par Sources :





