The aim of this Note is to give some applications of twistor theory about existence or non-existence of complex structures. We slightly improve Yau's result [Topology 15 (1976) 51–53] by giving the full list of compact parallelizable real 4-manifolds with a complex structure. On the other hand, we give a family of parallelizable 4-manifolds without complex structure but whose product with the sphere is complex.
Le but de cette Note est de donner quelques applications de la théorie des espaces twistoriels à l'existence ou l'inexistence de structures complexes. Ainsi, on précise le résultat de Yau [Topology 15 (1976) 51–53] en donnant la liste complète des 4-variétés réelles compactes parallélisables munies d'une structure complexe. À l'inverse, on explicite une famille de 4-variétés parallélisables sans structure complexe, mais dont le produit avec la sphère est complexe.
Accepted:
Published online:
@article{CRMATH_2005__341_1_35_0, author = {Deschamps, Guillaume}, title = {4-vari\'et\'es parall\'elisables sans structure complexe dont l'espace twistoriel est complexe}, journal = {Comptes Rendus. Math\'ematique}, pages = {35--38}, publisher = {Elsevier}, volume = {341}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2005.05.027}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/j.crma.2005.05.027/} }
TY - JOUR AU - Deschamps, Guillaume TI - 4-variétés parallélisables sans structure complexe dont l'espace twistoriel est complexe JO - Comptes Rendus. Mathématique PY - 2005 SP - 35 EP - 38 VL - 341 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.05.027/ DO - 10.1016/j.crma.2005.05.027 LA - fr ID - CRMATH_2005__341_1_35_0 ER -
%0 Journal Article %A Deschamps, Guillaume %T 4-variétés parallélisables sans structure complexe dont l'espace twistoriel est complexe %J Comptes Rendus. Mathématique %D 2005 %P 35-38 %V 341 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2005.05.027/ %R 10.1016/j.crma.2005.05.027 %G fr %F CRMATH_2005__341_1_35_0
Deschamps, Guillaume. 4-variétés parallélisables sans structure complexe dont l'espace twistoriel est complexe. Comptes Rendus. Mathématique, Volume 341 (2005) no. 1, pp. 35-38. doi : 10.1016/j.crma.2005.05.027. https://www.numdam.org/articles/10.1016/j.crma.2005.05.027/
[1] Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, Volume 362 (1978), pp. 425-461
[2] Compact Complex Surfaces, Springer, Berlin, 2004
[3] Einstein Manifold, Springer, Berlin, 1987
[4] Some parallelizable four-manifolds not admitting a complex structure, Bull. London Math. Soc., Volume 10 (1978), pp. 303-304
[5] Smooth Four-Manifolds and Complex Surfaces, Springer, Berlin, 1994
[6] Spin Geometry, Princeton University Press, Princeton, NJ, 1989
[7] Parallelizable manifolds without complex structure, Topology, Volume 15 (1976), pp. 51-53
[8] Sur les classes caractéristiques des structures fibrées sphériques, Hermann, Paris, 1952
Cited by Sources: