[Estimations de certaines sommes exponentielles en theorie de complexité]
It is shown that the correlation on between parity and a polynomial , q a fixed odd number and of degree d arbitrary but fixed, is exponentially small in n as . An application to circuit complexity, from where the problem originates, is given.
On démontre que la corrélation sur de la fonction parité et un polynôme , q un entier impair donné et de degré d arbitraire mais fixé, est exponentiellement petite en n pour . On obient une application en théorie de complexité où la question trouve son origine.
Accepté le :
Publié le :
Bourgain, Jean 1
@article{CRMATH_2005__340_9_627_0,
author = {Bourgain, Jean},
title = {Estimation of certain exponential sums arising in complexity theory},
journal = {Comptes Rendus. Math\'ematique},
pages = {627--631},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {9},
doi = {10.1016/j.crma.2005.03.008},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2005.03.008/}
}
TY - JOUR AU - Bourgain, Jean TI - Estimation of certain exponential sums arising in complexity theory JO - Comptes Rendus. Mathématique PY - 2005 SP - 627 EP - 631 VL - 340 IS - 9 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.03.008/ DO - 10.1016/j.crma.2005.03.008 LA - en ID - CRMATH_2005__340_9_627_0 ER -
%0 Journal Article %A Bourgain, Jean %T Estimation of certain exponential sums arising in complexity theory %J Comptes Rendus. Mathématique %D 2005 %P 627-631 %V 340 %N 9 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2005.03.008/ %R 10.1016/j.crma.2005.03.008 %G en %F CRMATH_2005__340_9_627_0
Bourgain, Jean. Estimation of certain exponential sums arising in complexity theory. Comptes Rendus. Mathématique, Tome 340 (2005) no. 9, pp. 627-631. doi: 10.1016/j.crma.2005.03.008
[1] Lower bounds for approximation by low degree polynomials over , Annual IEEE Conference on Computational Complexity (formerly Annual Conference on Structure in Complexity Theory), vol. 16, 2001
[2] On the correlation of symmetric functions, Math. Systems Theory, Volume 29 (1996) no. 3, pp. 245-258
[3] E. Dueñez, S. Miller, A. Roy, H. Straubing Incomplete quadratic exponential sums in several variables, preprint
[4] The correlation between parity and quadratic polynomials mod3, J. Comput. System Sci., Volume 69 (2004) no. 1, pp. 28-44
[5] Threshold circuits of bounded depth, J. Comput. System Sci., Volume 46 (1993) no. 2, pp. 129-154
Cité par Sources :





