[Fonctions de Green avec singularités analytiques]
We study properties of a Green function with singularities determined by a closed complex subspace A of a complex manifold X. It is defined as the largest negative plurisubharmonic function u satisfying locally , where with local generators for the ideal sheaf of A.
Nous étudions des propriétés d'une fonction de Green avec des singularités determinées par un sous-espace fermé complexe A d'une variété complexe lisse X. Elle est définie comme la plus grande fonction plurisouharmonique u négative vérifiant , où avec générateurs locaux du faisceau d'idéaux de A.
Accepté le :
Publié le :
Rashkovskii, Alexander 1 ; Sigurdsson, Ragnar 2
@article{CRMATH_2005__340_7_479_0,
author = {Rashkovskii, Alexander and Sigurdsson, Ragnar},
title = {Green functions with analytic singularities},
journal = {Comptes Rendus. Math\'ematique},
pages = {479--482},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {7},
doi = {10.1016/j.crma.2005.02.019},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2005.02.019/}
}
TY - JOUR AU - Rashkovskii, Alexander AU - Sigurdsson, Ragnar TI - Green functions with analytic singularities JO - Comptes Rendus. Mathématique PY - 2005 SP - 479 EP - 482 VL - 340 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.02.019/ DO - 10.1016/j.crma.2005.02.019 LA - en ID - CRMATH_2005__340_7_479_0 ER -
%0 Journal Article %A Rashkovskii, Alexander %A Sigurdsson, Ragnar %T Green functions with analytic singularities %J Comptes Rendus. Mathématique %D 2005 %P 479-482 %V 340 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2005.02.019/ %R 10.1016/j.crma.2005.02.019 %G en %F CRMATH_2005__340_7_479_0
Rashkovskii, Alexander; Sigurdsson, Ragnar. Green functions with analytic singularities. Comptes Rendus. Mathématique, Tome 340 (2005) no. 7, pp. 479-482. doi: 10.1016/j.crma.2005.02.019
[1] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997) no. 2, pp. 207-302
[2] Monge–Ampère operators, Lelong numbers and intersection theory (Ancona, V.; Silva, A., eds.), Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York, 1993, pp. 115-193
[3] On the product property of pluricomplex Green functions, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2855-2858
[4] Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angev. Math., Volume 501 (1998), pp. 1-39
[5] Plurisubharmonic extremal functions, Lelong numbers and coherent ideal sheaves, Indiana U. Math. J., Volume 48 (1999), pp. 1513-1534
[6] Plurisubharmonicty of envelopes of disc functionals on manifolds, J. Reine Angew. Math., Volume 555 (2003), pp. 27-38
[7] Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl., Volume 68 (1989), pp. 319-347
[8] Local indicators for plurisubharmonic functions, J. Math. Pures Appl., Volume 78 (1999), pp. 233-247
[9] Maximal plurisubharmonic functions associated to holomorphic mappings, Indiana U. Math. J., Volume 47 (1998), pp. 297-309
Cité par Sources :





