[Sur les inégalités de Sobolev logarithmiques pour les dérivées fractionnelles d'ordre supérieur]
On , we prove the existence of sharp logarithmic Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. Any function f ∈ satisfies
Sur , on établi l'existence d'inégalités de Sobolev logarithmiques optimales pour les dérivées fractionnelles d'ordre supérieur. Soit s et α deux réels positifs. Pour toute fonction f ∈ , on établit l'inégalité suivante :
Accepté le :
Publié le :
Cotsiolis, Athanase 1 ; Tavoularis, Nikolaos K. 1
@article{CRMATH_2005__340_3_205_0,
author = {Cotsiolis, Athanase and Tavoularis, Nikolaos K.},
title = {On logarithmic {Sobolev} inequalities for higher order fractional derivatives},
journal = {Comptes Rendus. Math\'ematique},
pages = {205--208},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {3},
doi = {10.1016/j.crma.2004.11.030},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.11.030/}
}
TY - JOUR AU - Cotsiolis, Athanase AU - Tavoularis, Nikolaos K. TI - On logarithmic Sobolev inequalities for higher order fractional derivatives JO - Comptes Rendus. Mathématique PY - 2005 SP - 205 EP - 208 VL - 340 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2004.11.030/ DO - 10.1016/j.crma.2004.11.030 LA - en ID - CRMATH_2005__340_3_205_0 ER -
%0 Journal Article %A Cotsiolis, Athanase %A Tavoularis, Nikolaos K. %T On logarithmic Sobolev inequalities for higher order fractional derivatives %J Comptes Rendus. Mathématique %D 2005 %P 205-208 %V 340 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2004.11.030/ %R 10.1016/j.crma.2004.11.030 %G en %F CRMATH_2005__340_3_205_0
Cotsiolis, Athanase; Tavoularis, Nikolaos K. On logarithmic Sobolev inequalities for higher order fractional derivatives. Comptes Rendus. Mathématique, Tome 340 (2005) no. 3, pp. 205-208. doi: 10.1016/j.crma.2004.11.030
[1] Sur les inégalités de Sobolev logarithmiques, 10, Société Mathématique de France, Paris, 2000
[2] Some Nonlinear Problems in Riemannian Geometry, Springer, 1998
[3] Inequalities in Fourier analysis, Ann. Math., Volume 102 (1975), pp. 159-182
[4] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 2, pp. 213-243
[5] On sharp Sobolev embedding and the logarithmic Sobolev inequalities, Bull. London Math. Soc., Volume 30 (1998), pp. 80-84
[6] Sharp Sobolev type inequalities for higher fractional derivatives, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 801-804
[7] Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., Volume 295 (2004), pp. 225-236
[8] Une initiation aux inégalités de Sobolev logarithmiques, Cours Spécialisés, 5, Société Mathématique de France, Paris, 1999
[9] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 761, pp. 1061-1083
[10] Analysis, Amer. Math. Soc., 2001
[11] Nonlinear diffusions, hypercontractivity and the optimal -Euclidean logarithmic Sobolev inequality, J. Math. Anal. Appl., Volume 293 (2004) no. 2, pp. 375-388
[12] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 255-269
[13] N.K. Tavoularis, Thèse de Doctorat de l'Université de Patras, Spécialité Mathématiques, 2004
Cité par Sources :





