[Sur un théorème de Philip Hartman.]
We generalize Hartman's linearization theorem for local contractions and explain how to simplify its proof.
Nous généralisons le théorème de linéarisation des contractions locales dû à Hartman et expliquons comment en simplifier la démonstration.
Accepté le :
Publié le :
Abbaci, Brahim 1
@article{CRMATH_2004__339_11_781_0,
author = {Abbaci, Brahim},
title = {On a theorem of {Philip} {Hartman}},
journal = {Comptes Rendus. Math\'ematique},
pages = {781--786},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {11},
doi = {10.1016/j.crma.2004.10.010},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.10.010/}
}
Abbaci, Brahim. On a theorem of Philip Hartman. Comptes Rendus. Mathématique, Tome 339 (2004) no. 11, pp. 781-786. doi: 10.1016/j.crma.2004.10.010
[1] B. Abbaci, Variétés invariantes et applications, Thèse, Université Paris 7, 2001
[2] B. Abbaci, A generalization of a theorem by Hartman and some applications, in preparation
[3] Variétés stables et formes normales, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 87-92
[4] Invariant manifolds revisited, Proc. Steklov Instit., Volume 236 (2002), pp. 415-433
[5] M. Chaperon, Stable manifolds and the Perron–Irwin method, in: Ergodic Theory and Dynamical Systems in memory of Michael R. Herman, in press
[6] On Irwin's proof of the pseudo-stable manifold theorem, Math. Z., Volume 219 (1995), pp. 301-321
[7] On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mex., Volume 5 (1960), pp. 220-241
Cité par Sources :





