[Sur un problème de minimisation lié au relèvement des fonctions BV à valeurs dans .]
For denote by K the set of minimizers of the problem , over satisfying . We show that an extreme point of K must be a lifting of u, up to an additive constant. We also prove a more general result for the case of u in .
Pour on désigne par K l'ensemble des minimiseurs pour le problème sur l'ensemble des fonctions vérifiant . On démontre que chaque point extrême de K est un relèvement de u, à une constante additive près. On démontre ainsi une généralisation pour le cas .
Publié le :
Poliakovsky, Arkady 1
@article{CRMATH_2004__339_12_855_0,
author = {Poliakovsky, Arkady},
title = {On a minimization problem related to lifting of {BV} functions with values in $ {S}^{1}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {855--860},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {12},
doi = {10.1016/j.crma.2004.09.030},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.09.030/}
}
TY - JOUR
AU - Poliakovsky, Arkady
TI - On a minimization problem related to lifting of BV functions with values in $ {S}^{1}$
JO - Comptes Rendus. Mathématique
PY - 2004
SP - 855
EP - 860
VL - 339
IS - 12
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2004.09.030/
DO - 10.1016/j.crma.2004.09.030
LA - en
ID - CRMATH_2004__339_12_855_0
ER -
%0 Journal Article
%A Poliakovsky, Arkady
%T On a minimization problem related to lifting of BV functions with values in $ {S}^{1}$
%J Comptes Rendus. Mathématique
%D 2004
%P 855-860
%V 339
%N 12
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2004.09.030/
%R 10.1016/j.crma.2004.09.030
%G en
%F CRMATH_2004__339_12_855_0
Poliakovsky, Arkady. On a minimization problem related to lifting of BV functions with values in $ {S}^{1}$. Comptes Rendus. Mathématique, Tome 339 (2004) no. 12, pp. 855-860. doi: 10.1016/j.crma.2004.09.030
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, 2000
[2] H. Brezis, P. Mironescu, A.C. Ponce, maps with values into , in: S. Chanillo, P. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., American Mathematical Society, in press
[3] Lifting of BV functions with values in , C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 159-164
[4] Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998
[5] R. Ignat, The space : minimal connection and optimal lifting, preprint
Cité par Sources :





