[Inégalités de Hardy–Sobolev précisées.]
Let Ω be a smooth bounded domain in , . We show that Hardy's inequality involving the distance to the boundary, with best constant (), may still be improved by adding a multiple of the critical Sobolev norm.
Soit Ω un ouvert borné et regulier dans , . On montre que l'inegalité de Hardy, liée à la distance au bord, avec meilleure constante (), peut être améliorée en ajoutant un multiple de la norme de Sobolev critique.
Publié le :
Filippas, S. 1, 2 ; Maz'ya, V.G. 3, 4 ; Tertikas, A. 2, 5
@article{CRMATH_2004__339_7_483_0,
author = {Filippas, S. and Maz'ya, V.G. and Tertikas, A.},
title = {Sharp {Hardy{\textendash}Sobolev} inequalities},
journal = {Comptes Rendus. Math\'ematique},
pages = {483--486},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {7},
doi = {10.1016/j.crma.2004.07.023},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.07.023/}
}
TY - JOUR AU - Filippas, S. AU - Maz'ya, V.G. AU - Tertikas, A. TI - Sharp Hardy–Sobolev inequalities JO - Comptes Rendus. Mathématique PY - 2004 SP - 483 EP - 486 VL - 339 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2004.07.023/ DO - 10.1016/j.crma.2004.07.023 LA - en ID - CRMATH_2004__339_7_483_0 ER -
%0 Journal Article %A Filippas, S. %A Maz'ya, V.G. %A Tertikas, A. %T Sharp Hardy–Sobolev inequalities %J Comptes Rendus. Mathématique %D 2004 %P 483-486 %V 339 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2004.07.023/ %R 10.1016/j.crma.2004.07.023 %G en %F CRMATH_2004__339_7_483_0
Filippas, S.; Maz'ya, V.G.; Tertikas, A. Sharp Hardy–Sobolev inequalities. Comptes Rendus. Mathématique, Tome 339 (2004) no. 7, pp. 483-486. doi: 10.1016/j.crma.2004.07.023
[1] A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc., Volume 356 (2004) no. 6, pp. 2169-2196
[2] Hardy's inequalities revisited, Ann. Scuola Norm. Pisa, Volume 25 (1997), pp. 217-237
[3] Hardy-type inequalities, J. Eur. Math. Soc., Volume 6 (2004) no. 3, pp. 335-365
[4] S. Filippas, V.G. Maz'ya, A. Tertikas, Critical Hardy Sobolev inequalities, in preparation
[5] Optimizing improved Hardy inequalities, J. Funct. Anal., Volume 192 (2002), pp. 186-233
[6] Sobolev Spaces, Springer, 1985
[7] The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., Volume 173 (2000), pp. 103-153
Cité par Sources :





