[Équations elliptiques avec exposant critique sur : nouvelles solutions non-minimisantes.]
Consider the problem:
On considère le problème :
Publié le :
Brezis, Haïm 1 ; Peletier, Lambertus A. 2
@article{CRMATH_2004__339_6_391_0,
author = {Brezis, Ha{\"\i}m and Peletier, Lambertus A.},
title = {Elliptic equations with critical exponent on $ {\mathbf{S}}^{3}$: new non-minimising solutions},
journal = {Comptes Rendus. Math\'ematique},
pages = {391--394},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {6},
doi = {10.1016/j.crma.2004.07.010},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.07.010/}
}
TY - JOUR
AU - Brezis, Haïm
AU - Peletier, Lambertus A.
TI - Elliptic equations with critical exponent on $ {\mathbf{S}}^{3}$: new non-minimising solutions
JO - Comptes Rendus. Mathématique
PY - 2004
SP - 391
EP - 394
VL - 339
IS - 6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2004.07.010/
DO - 10.1016/j.crma.2004.07.010
LA - en
ID - CRMATH_2004__339_6_391_0
ER -
%0 Journal Article
%A Brezis, Haïm
%A Peletier, Lambertus A.
%T Elliptic equations with critical exponent on $ {\mathbf{S}}^{3}$: new non-minimising solutions
%J Comptes Rendus. Mathématique
%D 2004
%P 391-394
%V 339
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2004.07.010/
%R 10.1016/j.crma.2004.07.010
%G en
%F CRMATH_2004__339_6_391_0
Brezis, Haïm; Peletier, Lambertus A. Elliptic equations with critical exponent on $ {\mathbf{S}}^{3}$: new non-minimising solutions. Comptes Rendus. Mathématique, Tome 339 (2004) no. 6, pp. 391-394. doi: 10.1016/j.crma.2004.07.010
[1] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Commun. Math. Phys., Volume 235 (2003), pp. 427-466
[2] A. Ambrosetti, A. Malchiodi, W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J., in press
[3] The Brezis–Nirenberg problem on , J. Differential Equations, Volume 178 (2002), pp. 264-279
[4] Best constants and Emden equations for the critical exponent in , Math. Ann., Volume 313 (1999), pp. 83-93
[5] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[6] Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001
[7] Eigenfunctions of the equation , Soviet Math., Volume 165 (1965), pp. 36-39 (in Russian)
[8] S.I. Stingelin, Das Brezis–Nirenberg-Problem auf der Sphäre , Inauguraldissertation, Univerität Basel, 2004
Cité par Sources :





