We prove a duality theorem for some logarithmic -modules associated with a class of divisors. We also give some results for the locally quasi-homogeneous case.
On montre un théorème de dualité pour certains -modules logarithmiques associés à une classe de diviseurs. On donne aussi quelques résultats dans le cas localement quasi-homogène.
Accepted:
Published online:
@article{CRMATH_2004__338_6_461_0, author = {Castro-Jim\'enez, Francisco Jes\'us and Ucha-Enr{\i}́quez, Jos\'e Mar{\i}́a}, title = {Quasi-free divisors and duality}, journal = {Comptes Rendus. Math\'ematique}, pages = {461--466}, publisher = {Elsevier}, volume = {338}, number = {6}, year = {2004}, doi = {10.1016/j.crma.2004.01.006}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2004.01.006/} }
TY - JOUR AU - Castro-Jiménez, Francisco Jesús AU - Ucha-Enrı́quez, José Marı́a TI - Quasi-free divisors and duality JO - Comptes Rendus. Mathématique PY - 2004 SP - 461 EP - 466 VL - 338 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2004.01.006/ DO - 10.1016/j.crma.2004.01.006 LA - en ID - CRMATH_2004__338_6_461_0 ER -
%0 Journal Article %A Castro-Jiménez, Francisco Jesús %A Ucha-Enrı́quez, José Marı́a %T Quasi-free divisors and duality %J Comptes Rendus. Mathématique %D 2004 %P 461-466 %V 338 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2004.01.006/ %R 10.1016/j.crma.2004.01.006 %G en %F CRMATH_2004__338_6_461_0
Castro-Jiménez, Francisco Jesús; Ucha-Enrı́quez, José Marı́a. Quasi-free divisors and duality. Comptes Rendus. Mathématique, Volume 338 (2004) no. 6, pp. 461-466. doi : 10.1016/j.crma.2004.01.006. https://www.numdam.org/articles/10.1016/j.crma.2004.01.006/
[1] Analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl., Volume 6 (1972), pp. 273-285
[2] Rings of Differential Operators, North-Holland, Amsterdam, 1979
[3] Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 5, pp. 701-714
[4] Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv., Volume 77 (2002) no. 1, pp. 24-38
[5] The module for locally quasi-homogeneous free divisors, Compositio Math., Volume 134 (2002) no. 1, pp. 59-74
[6] Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc., Volume 348 (1996) no. 8, pp. 3037-3049
[7] Explicit comparison theorems for -modules, J. Symbolic Comput., Volume 32 (2001) no. 6, pp. 677-685 (Special Issue on Effective Methods in Rings of Differential Operators)
[8] Free divisors and duality for D-modules, Proc. Steklov Inst. Math., Volume 238 (2002), pp. 88-96
[9] Nonlinear sections of nonisolated complete intersections, New Developments in Singularity Theory, Cambridge, 2000, NATO Sci. Ser. II Math. Phys. Chem., vol. 21, Kluwer Academic, Dordrecht, 2001, pp. 405-445
[10] V. Goryunov, D. Mond, Tjurina and Milnor numbers of matrix singularities, Preprint, 2003
[11] On the holonomic systems of linear differential equations II, Invent. Math., Volume 49 (1978) no. 2, pp. 121-135
[12] Arrangements and Milnor fiber, Math. Ann., Volume 301 (1995), pp. 211-235
[13] Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo, Volume 27 (1980), pp. 256-291
[14] T. Torrelli, Sur les germes de fonctions méromorphes définis par un système differentiel d'orde 1, Preprint, 2002
[15] J.M. Ucha-Enrı́quez, Métodos constructivos en álgebras de operadores diferenciales, Ph.D. Thesis, Universidad de Sevilla, 1999
Cited by Sources:
☆ Partially supported by BFM2001-3164 and FQM-333.