[Sur la reconstruction d'une variété à bord dans ]
If the Riemann curvature tensor associated with a smooth field of positive-definite symmetric matrices of order n vanishes in a simply-connected open subset , then is the metric tensor field of a manifold isometrically immersed in .
In this Note, we first show how, under a mild smoothness assumption on the boundary of , this classical result can be extended “up to the boundary”. When is bounded, we also establish the continuity of the manifold with boundary obtained in this fashion as a function of its metric tensor field, the topologies being those of the Banach spaces .
Si le tenseur de courbure de Riemann associé à un champ régulier de matrices symétriques définies positives d'ordre n s'annule sur un ouvert simplement connexe, alors est le champ de tenseurs métriques d'une variété plongée isométriquement dans .
Dans cette Note, on montre d'abord, moyennant une hypothèse peu restrictive sur la régularité de la frontière de , comment ce résultat classique peut être étendu “jusqu'à la frontière”. Lorsque est borné, on établit aussi la continuité de la variété à bord ainsi obtenue en fonction de son champ de tenseurs métriques, les topologies étant celles des espaces de Banach .
Accepté le :
Publié le :
Ciarlet, Philippe G. 1 ; Mardare, Cristinel 2
@article{CRMATH_2004__338_4_333_0,
author = {Ciarlet, Philippe G. and Mardare, Cristinel},
title = {On the recovery of a manifold with boundary in $ \mathbb{R}^{n}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {333--340},
year = {2004},
publisher = {Elsevier},
volume = {338},
number = {4},
doi = {10.1016/j.crma.2003.12.018},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2003.12.018/}
}
TY - JOUR
AU - Ciarlet, Philippe G.
AU - Mardare, Cristinel
TI - On the recovery of a manifold with boundary in $ \mathbb{R}^{n}$
JO - Comptes Rendus. Mathématique
PY - 2004
SP - 333
EP - 340
VL - 338
IS - 4
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2003.12.018/
DO - 10.1016/j.crma.2003.12.018
LA - en
ID - CRMATH_2004__338_4_333_0
ER -
%0 Journal Article
%A Ciarlet, Philippe G.
%A Mardare, Cristinel
%T On the recovery of a manifold with boundary in $ \mathbb{R}^{n}$
%J Comptes Rendus. Mathématique
%D 2004
%P 333-340
%V 338
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2003.12.018/
%R 10.1016/j.crma.2003.12.018
%G en
%F CRMATH_2004__338_4_333_0
Ciarlet, Philippe G.; Mardare, Cristinel. On the recovery of a manifold with boundary in $ \mathbb{R}^{n}$. Comptes Rendus. Mathématique, Tome 338 (2004) no. 4, pp. 333-340. doi: 10.1016/j.crma.2003.12.018
[1] Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of non-linearly elastic rods and shells, Arch. Rational Mech. Anal., Volume 61 (1976), pp. 307-351
[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 337-403
[3] Continuity of a surface as a function of its two fundamental forms, J. Math. Pures Appl., Volume 82 (2002), pp. 253-274
[4] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185
[5] Continuity of a deformation as a function of its Cauchy–Green tensor, Arch. Rational Mech. Anal., Volume 167 (2003), pp. 255-269
[6] P.G. Ciarlet, C. Mardare, Extension of a Riemannian metric with vanishing curvature, C. R. Acad. Sci. Paris, Ser. I, in press
[7] P.G. Ciarlet, C. Mardare, Recovery of a manifold with boundary and its continuity as a function of its metric tensor, in press
[8] P.G. Ciarlet, C. Mardare, Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, in press
[9] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[10] Rotation and strain, Comm. Pure Appl. Math., Volume 14 (1961), pp. 391-413
[11] Bounds for deformations in terms of average strains (Shisha, O., ed.), Inequalities, III, Academic Press, New York, 1972, pp. 129-144
[12] New integral estimates for deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal., Volume 78 (1982), pp. 131-172
[13] Mappings of domains in and their metric tensors, Siberian Math. J., Volume 44 (2003), pp. 332-345
Cité par Sources :





