Le but de cette Note est de montrer l'existence et l'unicité d'un homomorphisme naturel non-trivial entre certains groupes associés à un ensemble fini. Cet homomorphisme fournit une partition naturelle en deux sous-ensembles sur l'ensemble des points d'une configuration finie générique.
We define and prove uniqueness of a natural homomorphism (called the Orchard morphism) from some groups associated naturally to a finite set E to the group of two-partitions of E representing equivalence relations having at most two classes on E. As an application, given a finite generic configuration , we exhibit a natural partition of in two sets.
Accepté le :
Publié le :
Bacher, Roland 1
@article{CRMATH_2004__338_3_187_0,
author = {Bacher, Roland},
title = {Le cocycle du verger},
journal = {Comptes Rendus. Math\'ematique},
pages = {187--190},
year = {2004},
publisher = {Elsevier},
volume = {338},
number = {3},
doi = {10.1016/j.crma.2003.11.021},
language = {fr},
url = {https://www.numdam.org/articles/10.1016/j.crma.2003.11.021/}
}
Bacher, Roland. Le cocycle du verger. Comptes Rendus. Mathématique, Tome 338 (2004) no. 3, pp. 187-190. doi: 10.1016/j.crma.2003.11.021
[1] Chromatic properties of generic planar configurations of points (Preprint) | arXiv
[2] Topology and Geometry, Springer, 1993
[3] A Basic Course in Algebraic Topology, Springer, 1991
Cité par Sources :





