Multiple stable integrals generalize Wiener–Itô integrals, their construction being based upon a generalized LePage representation. This approach allows one to study their behaviour. We are interested in this Note in the continuity for total variation norm of the laws of these integrals Id(f) with respect to f.
Les intégrales stables multiples généralisent celles de Wiener–Itô, leur construction est fondée sur une représentation de LePage généralisée. Cette approche permet d'étudier leur loi. Nous nous intéressons dans cette Note à la continuité pour la variation totale des lois de ces intégrales Id(f) par rapport à f.
Accepted:
Published online:
@article{CRMATH_2004__338_3_239_0, author = {Breton, Jean-Christophe}, title = {Convergence in variation of the laws of multiple stable integrals}, journal = {Comptes Rendus. Math\'ematique}, pages = {239--244}, publisher = {Elsevier}, volume = {338}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2003.11.020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2003.11.020/} }
TY - JOUR AU - Breton, Jean-Christophe TI - Convergence in variation of the laws of multiple stable integrals JO - Comptes Rendus. Mathématique PY - 2004 SP - 239 EP - 244 VL - 338 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2003.11.020/ DO - 10.1016/j.crma.2003.11.020 LA - en ID - CRMATH_2004__338_3_239_0 ER -
%0 Journal Article %A Breton, Jean-Christophe %T Convergence in variation of the laws of multiple stable integrals %J Comptes Rendus. Mathématique %D 2004 %P 239-244 %V 338 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2003.11.020/ %R 10.1016/j.crma.2003.11.020 %G en %F CRMATH_2004__338_3_239_0
Breton, Jean-Christophe. Convergence in variation of the laws of multiple stable integrals. Comptes Rendus. Mathématique, Volume 338 (2004) no. 3, pp. 239-244. doi : 10.1016/j.crma.2003.11.020. https://www.numdam.org/articles/10.1016/j.crma.2003.11.020/
[1] Multiple stable stochastic integrals: series representation and absolute continuity of their law, J. Theoret. Probab., Volume 15 (2002) no. 4, pp. 877-901
[2] Local Properties of Distributions of Stochastic Functionals, American Mathematical Society, 1998
[3] Limit Behavior of Multiple Stochastic Integral, Nauka, Moscow, 1989 pp. 55–57 (en Russe)
[4] Random Series and Stochastic Integrals. Single and Multiple Martingale Methods, Birkhäuser, 2001
[5] An asymptotic evaluation of the tail of a multiple symmetric α-stable integral, Ann. Probab., Volume 17 (1989), pp. 1503-1520
[6] Stable Non-Gaussian Random Processes, Chapman and Hall, 1994
Cited by Sources: