@article{ASENS_2007_4_40_4_675_0,
author = {Aubry, Erwann},
title = {Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive {Ricci} curvature},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {675--695},
year = {2007},
publisher = {Elsevier},
volume = {Ser. 4, 40},
number = {4},
doi = {10.1016/j.ansens.2007.07.001},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.ansens.2007.07.001/}
}
TY - JOUR
AU - Aubry, Erwann
TI - Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive Ricci curvature
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
SP - 675
EP - 695
VL - 40
IS - 4
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.ansens.2007.07.001/
DO - 10.1016/j.ansens.2007.07.001
LA - en
ID - ASENS_2007_4_40_4_675_0
ER -
%0 Journal Article
%A Aubry, Erwann
%T Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive Ricci curvature
%J Annales scientifiques de l'École Normale Supérieure
%D 2007
%P 675-695
%V 40
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2007.07.001/
%R 10.1016/j.ansens.2007.07.001
%G en
%F ASENS_2007_4_40_4_675_0
Aubry, Erwann. Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive Ricci curvature. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 4, pp. 675-695. doi: 10.1016/j.ansens.2007.07.001
[1] , A theorem of Myers, Duke Math. J. 24 (1957) 345-348. | Zbl | MR
[2] Aubry E., Variétés de courbure de Ricci presque minorée : inégalités géométriques optimales et stabilité des variétés extrémales, Thèse, Institut Fourier, Grenoble (2003).
[3] , Riemannian manifolds with non-negative Ricci curvature, Duke Math. J. 39 (1972) 55-64. | Zbl | MR
[4] , , Sobolev inequalities and Myers' diameter theorem for an abstract Markov generator, Duke Math. J. (1996) 253-270. | Zbl | MR
[5] , On Ricci curvature and geodesics, Duke Math. J. 34 (1967) 667-676. | Zbl | MR
[6] Cheeger J., Degeneration of Riemannian metrics under Ricci curvature bounds, Piza (2001). | Zbl | MR
[7] , , Manifolds with Wells of negative Curvature, Invent. Math. 103 (1991) 471-495. | Zbl | MR
[8] , Isoperimetric inequalities based on integral norms of the Ricci curvature, Astérisque 157-158 (1988) 191-216. | Zbl | Numdam
[9] , Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152, Birkhäuser, Boston, 1999. | Zbl | MR
[10] , A generalization of Myers theorem and an application to relativistic cosmology, J. Diff. Geom. 14 (1979) 105-116. | Zbl | MR
[11] , Curvature h-principles, Ann. of Math. 142 (1995) 457-498. | Zbl | MR
[12] , A Ricci curvature criterion for compactness of Riemannian manifolds, Arch. Math. 39 (1982) 85-91. | Zbl | MR
[13] , Riemannian manifolds with positive mean curvature, Duke Math. J. (1941) 401-404. | Zbl | MR
[14] , , Integral curvature bounds, distance estimates and applications, J. Diff. Geom. 50 (1998) 269-298. | Zbl | MR
[15] , , Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997) 1031-1045. | Zbl | MR
[16] , , Analysis and geometry on manifolds with integral curvature bounds. II, Trans. AMS 353 (2) (2000) 457-478. | Zbl
[17] , , Bounds on the fundamental group of a manifold with almost non-negative Ricci curvature, J. Math. Soc. Japan 46 (1994) 267-287. | Zbl | MR
[18] , Riemannian Geometry, Amer. Math. Soc., Providence, Rhode Island, 1996. | Zbl
[19] , Integral curvature bounds and bounded diameter, Comm. Anal. Geom. 8 (2000) 531-543. | Zbl | MR
[20] , Complete manifolds with a little negative curvature, Am. J. Math. 113 (1991) 567-572. | Zbl | MR
[21] , Convergence of Riemannian manifolds with integral bounds on curvature I, Ann. Sci. Éc. Norm. Sup. 25 (1992) 77-105. | Zbl | MR | Numdam
Cité par Sources :






