Béguin, François 1 ; Crovisier, Sylvain  ; Le Roux, Frédéric 
@article{ASENS_2007_4_40_2_251_0,
author = {B\'eguin, Fran\c{c}ois and Crovisier, Sylvain and Le Roux, Fr\'ed\'eric},
title = {Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the {Denjoy-Rees} technique},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {251--308},
year = {2007},
publisher = {Elsevier},
volume = {Ser. 4, 40},
number = {2},
doi = {10.1016/j.ansens.2007.01.001},
zbl = {1132.37003},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.ansens.2007.01.001/}
}
TY - JOUR AU - Béguin, François AU - Crovisier, Sylvain AU - Le Roux, Frédéric TI - Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy-Rees technique JO - Annales scientifiques de l'École Normale Supérieure PY - 2007 SP - 251 EP - 308 VL - 40 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.ansens.2007.01.001/ DO - 10.1016/j.ansens.2007.01.001 LA - en ID - ASENS_2007_4_40_2_251_0 ER -
%0 Journal Article %A Béguin, François %A Crovisier, Sylvain %A Le Roux, Frédéric %T Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy-Rees technique %J Annales scientifiques de l'École Normale Supérieure %D 2007 %P 251-308 %V 40 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.ansens.2007.01.001/ %R 10.1016/j.ansens.2007.01.001 %G en %F ASENS_2007_4_40_2_251_0
Béguin, François; Crovisier, Sylvain; Le Roux, Frédéric. Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy-Rees technique. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 2, pp. 251-308. doi: 10.1016/j.ansens.2007.01.001
[1] , , New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. 23 (1970) 1-35. | Zbl | MR
[2] , , , , Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz, Nonlinearity 17 (4) (2004) 1427-1453. | Zbl | MR
[3] , , , Pseudo-rotations of the open annulus: variation on a theorem of J. Kwapisz, Bull. Braz. Math. Soc. (N.S.) 37 (2006) 275-306. | Zbl | MR
[4] Béguin F., Crovisier S., Jaeger T., Le Roux F., Denjoy constructions for fibered homeomorphism of the two-torus, in preparation.
[5] , Tame Cantor sets in , Pacific J. Math. 11 (1961) 435-446. | Zbl | MR
[6] , The Geometric Topology of 3-Manifolds, American Mathematical Society Colloquium Publications, vol. 40, American Mathematical Society, Providence, RI, 1983. | Zbl | MR
[7] , A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960) 74-76. | Zbl | MR
[8] , Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. Ser. IX 11 (1932) 333-375. | Zbl | Numdam
[9] , , , Ergodic Theory on Compact Spaces, Springer Lecture Notes in Math., vol. 527, Springer-Verlag, Berlin/New York, 1976. | Zbl | MR
[10] , , Existence de difféomorphismes minimaux, in: Dynamical Systems, vol. I, Warsaw, Astérisque, vol. 49, Soc. Math. France, Paris, 1977, 37-59. | Zbl | Numdam
[11] , , Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems 24 (5) (2004) 1477-1520. | Zbl | MR
[12] , A pathological area preserving diffeomorphism of the plane, Proc. Amer. Math. Soc. 86 (1) (1982) 163-168. | Zbl | MR
[13] , Construction d'un difféomorphisme minimal d'entropie topologique non-nulle, Ergodic Theory Dynam. Systems 1 (1981) 65-76. | Zbl | MR
[14] , Construction of some curious diffeomorphisms of the Riemann sphere, J. London Math. Soc. (2) 34 (2) (1986) 375-384. | Zbl | MR
[15] , On tame imbedding of 0-dimensional compact sets in , Yokohama Math. J. 7 (1959) 191-195. | Zbl | MR
[16] , , Towards a classification for quasi-periodically forced circle homeomorphisms, J. London Math. Soc. 73 (2006) 727-744. | Zbl | MR
[17] , Lyapounov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'I.H.É.S. 51 (1980) 131-173. | Zbl | MR | Numdam
[18] , Rotation numbers in the infinite annulus, Proc. Amer. Math. Soc. 129 (11) (2001) 3221-3230. | Zbl | MR
[19] , , Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory 11 (3) (1977/78) 275-282. | Zbl | MR
[20] , Embedding Cantor sets in a manifold. I. Tame Cantor sets in , Michigan Math. J. 13 (1966) 57-63. | Zbl | MR
[21] , , Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941) 874-920. | Zbl | MR
[22] , A minimal positive entropy homeomorphism of the 2-torus, J. London Math. Soc. 23 (1981) 537-550. | Zbl | MR
[23] , , Extending maps of a Cantor set product with an arc to near homeomorphisms of the 2-disk, Pacific J. Math. 192 (2) (2000) 369-384. | Zbl | MR
[24] , Entropy, isomorphisms and equivalence, in: , (Eds.), Handbook of Dynamical Systems, vol. 1A, Elsevier, Amsterdam, 2002. | Zbl | MR
Cité par Sources :






