In the case of favorable pressure gradient, Oleinik obtained the global-in-x solutions to the steady Prandtl equations with low regularity (see Oleinik and Samokhin [9], P.21, Theorem 2.1.1). Due to the degeneracy of the equation near the boundary, the question of higher regularity of Oleinik's solutions remains open. See the local-in-x higher regularity established by Guo and Iyer [5]. In this paper, we prove that Oleinik's solutions are smooth up to the boundary for any , using further maximum principle techniques. Moreover, since Oleinik only assumed low regularity on the data prescribed at , our result implies instant smoothness (in the steady case, is often considered as initial time).
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.007
Wang, Yue 1 ; Zhang, Zhifei 2
@article{AIHPC_2021__38_6_1989_0,
author = {Wang, Yue and Zhang, Zhifei},
title = {Global {\protect\emph{C}
} \protect\textsuperscript{\ensuremath{\infty}} regularity of the steady {Prandtl} equation with favorable pressure gradient},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1989--2004},
year = {2021},
publisher = {Elsevier},
volume = {38},
number = {6},
doi = {10.1016/j.anihpc.2021.02.007},
mrnumber = {4327905},
zbl = {1475.35099},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.007/}
}
TY - JOUR
AU - Wang, Yue
AU - Zhang, Zhifei
TI - Global C
∞ regularity of the steady Prandtl equation with favorable pressure gradient
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2021
SP - 1989
EP - 2004
VL - 38
IS - 6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.007/
DO - 10.1016/j.anihpc.2021.02.007
LA - en
ID - AIHPC_2021__38_6_1989_0
ER -
%0 Journal Article
%A Wang, Yue
%A Zhang, Zhifei
%T Global C
∞ regularity of the steady Prandtl equation with favorable pressure gradient
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1989-2004
%V 38
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.007/
%R 10.1016/j.anihpc.2021.02.007
%G en
%F AIHPC_2021__38_6_1989_0
Wang, Yue; Zhang, Zhifei. Global C
∞ regularity of the steady Prandtl equation with favorable pressure gradient. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1989-2004. doi: 10.1016/j.anihpc.2021.02.007
[1] Separation for the stationary Prandtl equation, Publ. Math. Inst. Hautes Études Sci., Volume 130 (2019), pp. 187-297 | MR | Zbl | DOI
[2] Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin., Volume 16 (2000), pp. 207-218 | MR | Zbl | DOI
[3] Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 233 (2019), pp. 1319-1382 | MR | Zbl | DOI
[4] Validity of steady Prandtl layer expansions | arXiv | Zbl | DOI
[5] Regularity and expansion for steady Prandtl equations | arXiv | Zbl | DOI
[6] On global-in-x stability of Blasius profiles, Arch. Ration. Mech. Anal., Volume 237 (2020), pp. 951-998 | MR | Zbl | DOI
[7] Global-in-x stability of steady Prandtl expansions for 2D Navier-Stokes flows | arXiv
[8] Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence, RI, 1996 | MR | Zbl
[9] Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999 | MR | Zbl
[10] , Heidelberg (1904), pp. 484-491
[11] Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. R. Soc. Lond. A, Volume 299 (1967), pp. 491-507 | MR | Zbl | DOI
[12] Boundary layer separation and local behavior for the steady Prandtl equation | arXiv | Zbl | DOI
[13] On the global existence of solutions to the Prandtl's system, Adv. Math., Volume 181 (2004), pp. 88-133 | MR | Zbl | DOI
Cité par Sources :





