Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1943-1959
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper studies the asymptotic behavior of coexistence steady-states of the Shigesada-Kawasaki-Teramoto model as both cross-diffusion coefficients tend to infinity at the same rate. In the case when either one of two cross-diffusion coefficients tends to infinity, Lou and Ni [18] derived a couple of limiting systems, which characterize the asymptotic behavior of coexistence steady-states. Recently, a formal observation by Kan-on [10] implied the existence of a limiting system including the nonstationary problem as both cross-diffusion coefficients tend to infinity at the same rate. This paper gives a rigorous proof of his observation as far as the stationary problem. As a key ingredient of the proof, we establish a uniform L estimate for all steady-states. Thanks to this a priori estimate, we show that the asymptotic profile of coexistence steady-states can be characterized by a solution of the limiting system.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.006
Classification : 35B45, 35B50, 35B32, 35J57, 92D25
Keywords: Cross-diffusion, Nonlinear elliptic system, A priori estimate, Maximum principle, Limiting system, Bifurcation

Kuto, Kousuke 1

1 Department of Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
@article{AIHPC_2021__38_6_1943_0,
     author = {Kuto, Kousuke},
     title = {Full cross-diffusion limit in the stationary {Shigesada-Kawasaki-Teramoto} model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1943--1959},
     year = {2021},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     doi = {10.1016/j.anihpc.2021.02.006},
     mrnumber = {4327903},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.006/}
}
TY  - JOUR
AU  - Kuto, Kousuke
TI  - Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1943
EP  - 1959
VL  - 38
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.006/
DO  - 10.1016/j.anihpc.2021.02.006
LA  - en
ID  - AIHPC_2021__38_6_1943_0
ER  - 
%0 Journal Article
%A Kuto, Kousuke
%T Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1943-1959
%V 38
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.006/
%R 10.1016/j.anihpc.2021.02.006
%G en
%F AIHPC_2021__38_6_1943_0
Kuto, Kousuke. Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1943-1959. doi: 10.1016/j.anihpc.2021.02.006

[1] Crandall, M.G.; Rabinowitz, P.H. Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340 | MR | Zbl | DOI

[2] Dancer, E.N.; Du, Y. Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differ. Equ., Volume 114 (1994), pp. 434-475 | MR | Zbl | DOI

[3] Dancer, E.N.; Hilhorst, D.; Mimura, M.; Peletier, L.A. Spatial segregation limit of a competition-diffusion system, Eur. J. Appl. Math., Volume 10 (1999), pp. 97-115 | MR | Zbl | DOI

[4] Dancer, E.N.; Zhang, Z. Dynamics of Lotka-Volterra competition systems with large interaction, J. Differ. Equ., Volume 182 (2002), pp. 470-489 | MR | Zbl | DOI

[5] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg, 1998 | MR | Zbl

[6] Hirose, T.; Yamada, Y. Multiple existence of positive solutions of competing species equations with diffusion and large interactions, Adv. Math. Sci. Appl., Volume 12 (2002), pp. 435-453 | MR | Zbl

[7] Jüngel, A. Diffusive and nondiffusive population models (Naldi, G.; Pareschi, L.; Toscani, G., eds.), Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser, Basel, 2010, pp. 397-425 | Zbl | MR | DOI

[8] Kan-on, Y. Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., Volume 28 (1993), pp. 509-536 | MR | Zbl

[9] Kan-on, Y. On the structure of positive solutions for the Shigesada-Kawasaki-Teramoto model with large interspecific competition rate, Int. J. Bifurc. Chaos Appl. Sci. Eng., Volume 30 (2020) no. 1 | MR | DOI

[10] Kan-on, Y. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates, Discrete Contin. Dyn. Syst., Volume 40 (2020), pp. 3561-3570 | MR | DOI

[11] Kolokolnikov, T.; Wei, J. Stability of spiky solutions in a competition model with cross-diffusion, SIAM J. Appl. Math., Volume 71 (2011), pp. 1428-1457 | MR | Zbl | DOI

[12] Krasnoselskii, M. Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, Oxford, 1964 | Zbl

[13] Kuto, K. Limiting structure of shrinking solutions to the stationary SKT model with large cross-diffusion, SIAM J. Math. Anal., Volume 47 (2015), pp. 3993-4024 | MR | DOI

[14] Kuto, K.; Yamada, Y. Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., Volume 89 (2010), pp. 1037-1066 | MR | Zbl | DOI

[15] Kuto, K.; Yamada, Y. On limit systems for some population models with cross-diffusion, Discrete Contin. Dyn. Syst., Ser. B, Volume 17 (2012), pp. 2745-2769 | MR | Zbl | DOI

[16] Li, Q.; Wu, Y. Stability analysis on a type of steady state for the SKT competition model with large cross diffusion, J. Math. Anal. Appl., Volume 462 (2018), pp. 1048-1078 | MR | DOI

[17] Lou, Y.; Ni, W.-M. Diffusion, self-diffusion and cross-diffusion, J. Differ. Equ., Volume 131 (1996), pp. 79-131 | MR | Zbl | DOI

[18] Lou, Y.; Ni, W.-M. Diffusion vs cross-diffusion: an elliptic approach, J. Differ. Equ., Volume 154 (1999), pp. 157-190 | MR | Zbl | DOI

[19] Lou, Y.; Ni, W.-M.; Yotsutani, S. On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., Volume 10 (2004), pp. 435-458 | MR | Zbl | DOI

[20] Lou, Y.; Ni, W.-M.; Yotsutani, S. Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., Volume 35 (2015), pp. 1589-1607 | MR | Zbl | DOI

[21] Mimura, M. Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., Volume 11 (1981), pp. 621-635 | MR | Zbl | DOI

[22] Mimura, M.; Kawasaki, K. Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., Volume 9 (1980), pp. 49-64 | MR | Zbl | DOI

[23] Mimura, M.; Nishiura, Y.; Tesei, A.; Tsujikawa, T. Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., Volume 14 (1984), pp. 425-449 | MR | Zbl | DOI

[24] Mori, T.; Suzuki, T.; Yotsutani, S. Numerical approach to existence and stability of stationary solutions to a SKT cross-diffusion equation, Math. Models Methods Appl. Sci., Volume 11 (2018), pp. 2191-2210 | MR | DOI

[25] Ni, W.-M. The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82, SIAM, Philadelphia, 2011 | MR | Zbl

[26] Ni, W.-M.; Wu, Y.; Xu, Q. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 5271-5298 | MR | Zbl | DOI

[27] Okubo, A.; Levin, L.A. Diffusion and Ecological Problems: Modern Perspective, Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001 | MR | Zbl

[28] Shigesada, N.; Kawasaki, K.; Teramoto, E. Spatial segregation of interacting species, J. Theor. Biol., Volume 79 (1979), pp. 83-99 | MR | DOI

[29] Wang, L.; Wu, Y.; Xu, Q. Instability of spiky steady states for S-K-T biological competing model with cross-diffusion, Nonlinear Anal., Volume 159 (2017), pp. 424-457 | MR | DOI

[30] Wu, Y. The instability of spiky steady states for a competing species model with cross-diffusion, J. Differ. Equ., Volume 213 (2005), pp. 289-340 | MR | Zbl | DOI

[31] Wu, Y.; Xu, Q. The existence and structure of large spiky steady states for S-K-T competition systems with cross diffusion, Discrete Contin. Dyn. Syst., Volume 29 (2011), pp. 367-385 | MR | Zbl | DOI

[32] Yamada, Y. Positive solutions for Lotka-Volterra systems with cross-diffusion (Chipot, M., ed.), Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 6, Elsevier, Amsterdam, 2008, pp. 411-501 | MR | Zbl | DOI

[33] Yamada, Y. Global solutions for the Shigesada-Kawasaki-Teramoto model with cross-diffusion (Du, Y.; Ishii, H.; Lin, W.-Y., eds.), Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Sci. Publ., Hackensack, NJ, 2009, pp. 282-299 | MR | Zbl | DOI

[34] Yotsutani, S. Multiplicity of solutions in the Lotka-Volterra competition with cross-diffusion, RIMS Kokyuroku, Volume 1838 (2013), pp. 116-125

Cité par Sources :

This research was partially supported by JSPS KAKENHI Grant Number 19K03581.