Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1841-1867
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Consider the vanishing viscosity limit of the 3D incompressible Oldroyd-B model. It is shown that this set of equations admits a unique global solution with small analytic data uniformly in the coupling parameter ω close to 1 that corresponds to the inviscid case. We justify the limit from the Oldroyd-B model to the inviscid case ω=1 for all time. Moreover, if the nonlinear term gα(τ,u) is ignored, similar results hold without resorting to the analytic regularity.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.003
Classification : 76A10, 76B03
Keywords: Oldroyd-B model, Global well-posedness, Inviscid limit

Zi, Ruizhao 1

1 School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, PR China
@article{AIHPC_2021__38_6_1841_0,
     author = {Zi, Ruizhao},
     title = {Vanishing viscosity limit of the {3D} incompressible {Oldroyd-B} model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1841--1867},
     year = {2021},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     doi = {10.1016/j.anihpc.2021.02.003},
     mrnumber = {4327899},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.003/}
}
TY  - JOUR
AU  - Zi, Ruizhao
TI  - Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1841
EP  - 1867
VL  - 38
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.003/
DO  - 10.1016/j.anihpc.2021.02.003
LA  - en
ID  - AIHPC_2021__38_6_1841_0
ER  - 
%0 Journal Article
%A Zi, Ruizhao
%T Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1841-1867
%V 38
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.003/
%R 10.1016/j.anihpc.2021.02.003
%G en
%F AIHPC_2021__38_6_1841_0
Zi, Ruizhao. Vanishing viscosity limit of the 3D incompressible Oldroyd-B model. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1841-1867. doi: 10.1016/j.anihpc.2021.02.003

[1] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 343, Springer, Heidelberg, 2011 | MR | Zbl

[2] Bony, J.-M. Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981), pp. 209-246 | MR | Zbl | Numdam

[3] Cai, Y.; Lei, Z.; Lin, F.H.; Masmoudi, N. Vanishing viscosity limit for incompressible viscoelasticity in two dimensions, Commun. Pure Appl. Math., Volume 72 (2019), pp. 2063-2120 | MR

[4] Chemin, J.-Y. Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, Semin. Congr., Volume 9 (2004), pp. 99-123 | MR | Zbl

[5] Chemin, J.-Y.; Gallagher, I.; Paicu, M. Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. Math., Volume 173 (2011), pp. 983-1012 | MR | Zbl

[6] Chemin, J.Y.; Masmoudi, N. About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., Volume 33 (2001), pp. 84-112 | MR | Zbl

[7] Chen, Q.L.; Miao, C.X. Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Anal., Volume 68 (2008), pp. 1928-1939 | MR | Zbl

[8] Chen, Y.; Zhang, P. The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 1793-1810 | MR | Zbl

[9] Constantin, P.; Kliegl, M. Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 725-740 | MR | Zbl

[10] Constantin, P.; Wu, J.H.; Zhao, J.F.; Zhu, Y. High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation | arXiv

[11] Elgindi, T.M.; Liu, J.L. Global wellposedness to the generalized Oldroyd type models in R3 , J. Differ. Equ., Volume 259 (2015) no. 5, pp. 1958-1966 | MR

[12] Elgindi, T.M.; Rousset, F. Global regularity for some Oldroyd-B type models, Commun. Pure Appl. Math., Volume 68 (2015), pp. 2005-2021 | MR

[13] Danchin, R. Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., Volume 141 (2000), pp. 579-614 | MR | Zbl

[14] Fang, D.Y.; Hieber, M.; Zi, R.Z. Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters, Math. Ann., Volume 357 (2013), pp. 687-709 | MR | Zbl

[15] Fang, D.Y.; Xu, J. Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping, Nonlinear Anal., Volume 70 (2009), pp. 244-261 | MR | Zbl

[16] Fang, D.Y.; Zhang, T.; Zi, R.Z. Dispersive effects of the incompressible viscoelastic fluids, Discrete Contin. Dyn. Syst., Volume 38 (2018), pp. 5261-5295 | MR

[17] Fang, D.Y.; Zi, R.Z. Global solutions to the Oldroyd-B model with a class of large initial data, SIAM J. Math. Anal., Volume 48 (2016), pp. 1054-1084 | MR

[18] Guillopé, C.; Saut, J.C. Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., Volume 15 (1990), pp. 849-869 | MR | Zbl

[19] Hieber, M.; Naito, Y.; Shibata, Y. Global existence results for Oldroyd-B fluids in exterior domains, J. Differ. Equ., Volume 252 (2012), pp. 2617-2629 | MR | Zbl

[20] Kato, T. The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | MR | Zbl

[21] Hu, X.; Lin, F.H. Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Commun. Pure Appl. Math., Volume 69 (2016), pp. 372-404 | MR

[22] Kessenich, P. Global existence with small initial data for three-dimensional incompressible isotropic viscoelastic materials | arXiv

[23] Lei, Z. On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., Volume 198 (2010), pp. 13-37 | MR | Zbl

[24] Lei, Z. Global well-posedness of incompressible elastodynamics in two dimensions, Commun. Pure Appl. Math., Volume 69 (2016), pp. 2072-2106 | MR

[25] Lei, Z.; Liu, C.; Zhou, Y. Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., Volume 188 (2008), pp. 371-398 | MR | Zbl

[26] Lei, Z.; Sideris, T.C.; Zhou, Y. Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Am. Math. Soc., Volume 367 (2015), pp. 8175-8197 | MR

[27] Lei, Z.; Zhou, Y. Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., Volume 37 (2005), pp. 797-814 | MR | Zbl

[28] Lin, F.H.; Liu, C.; Zhang, P. On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., Volume 58 (2005), pp. 1437-1471 | MR | Zbl

[29] Lin, F.; Zhang, P. On the initial-boundary value problem of the incompressible viscoelastic fluid system, Commun. Pure Appl. Math., Volume 61 (2008), pp. 539-558 | MR | Zbl

[30] Lions, P.L.; Masmoudi, N. Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math., Ser. B, Volume 21 (2000), pp. 131-146 | MR | Zbl

[31] Molinet, L.; Talhouk, R. On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonlinear Differ. Equ. Appl., Volume 11 (2004), pp. 349-359 | MR | Zbl

[32] Oldroyd, J.G. Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. R. Soc. Lond., Volume 245 (1958), pp. 278-297 | MR | Zbl

[33] Paicu, M.; Zhang, P. Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Commun. Math. Phys., Volume 307 (2011), pp. 713-759 | MR | Zbl

[34] Paicu, M.; Zhang, P. Global well-posedness of Prandtl system with small analytic data | arXiv

[35] Paicu, M.; Zhang, P.; Zhang, Z.F. On the hydrostatic approximation of the Navier-Stokes equations in a thin strip, Adv. Math., Volume 372 (2020) | MR

[36] Paicu, M.; Zhang, Z.F. Global regularity for the Navier-Stokes equations with some classes of large initial data, Anal. PDE, Volume 4 (2011), pp. 95-113 | MR | Zbl

[37] Paicu, M.; Zhang, Z.F. Global well-posedness for the 3D Navier-Stokes equations with ill-prepared initial data, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 395-411 | MR | Zbl

[38] Sideris, T.C.; Thomases, B.; Wang, D.-H. Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 795-816 | MR | Zbl

[39] Sideris, T.C.; Thomases, B. Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Commun. Pure Appl. Math., Volume 58 (2005), pp. 750-788 | MR | Zbl

[40] Sideris, T.C.; Thomases, B. Global existence for three-dimensional incompressible isotropic elastodynamics, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1707-1730 | MR | Zbl

[41] Wang, X. Global existence for the 2D incompressible isotropic elastodynamics for small initial data, Ann. Henri Poincaré, Volume 18 (2017), pp. 1213-1267 | MR

[42] Wang, C.; Wang, Y.X.; Zhang, Z.F. Gevrey stability of hydrostatic approximate for the Navier-Stokes equations in a thin domain | arXiv

[43] Zhang, P.; Zhang, Z.F. Long time well-posedness of Prandtle system with small data, J. Funct. Anal., Volume 270 (2016), pp. 2591-2615 | MR

[44] Zhang, T.; Fang, D.Y. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework, SIAM J. Math. Anal., Volume 44 (2012), pp. 2266-2288 | MR | Zbl

[45] Zhu, Y. Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism, J. Funct. Anal., Volume 274 (2018), pp. 2039-2060 | MR

[46] Zi, R.Z.; Fang, D.Y.; Zhang, T. Global solution to the incompressible Oldroyd-B model in the critical Lp framework: the case of the non-small coupling parameter, Arch. Ration. Mech. Anal., Volume 213 (2014), pp. 651-687 | MR | Zbl

Cité par Sources :