The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1583-1603
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider classical solutions of the inviscid Surface Quasi-geostrophic equation that are a small perturbation ϵ from a radial stationary solution θ=|x|. We use a modified energy method to prove the existence time of classical solutions from 1ϵ to a time scale of 1ϵ4. Moreover, by perturbing in a suitable direction we construct global smooth solutions, via bifurcation, that rotate uniformly in time and space.

Reçu le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.005
Keywords: Surface Quasi-geostrophic, Normal forms, Rotating solutions

Castro, Ángel 1 ; Córdoba, Diego 1 ; Zheng, Fan 1

1 Instituto de Ciencias Matemáticas ICMAT-CSIC-UAM-UCM-UC3M, 28049, Madrid, Spain
@article{AIHPC_2021__38_5_1583_0,
     author = {Castro, \'Angel and C\'ordoba, Diego and Zheng, Fan},
     title = {The lifespan of classical solutions for the inviscid {Surface} {Quasi-geostrophic} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1583--1603},
     year = {2021},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     doi = {10.1016/j.anihpc.2020.12.005},
     mrnumber = {4300933},
     zbl = {1477.35271},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/}
}
TY  - JOUR
AU  - Castro, Ángel
AU  - Córdoba, Diego
AU  - Zheng, Fan
TI  - The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1583
EP  - 1603
VL  - 38
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/
DO  - 10.1016/j.anihpc.2020.12.005
LA  - en
ID  - AIHPC_2021__38_5_1583_0
ER  - 
%0 Journal Article
%A Castro, Ángel
%A Córdoba, Diego
%A Zheng, Fan
%T The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1583-1603
%V 38
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/
%R 10.1016/j.anihpc.2020.12.005
%G en
%F AIHPC_2021__38_5_1583_0
Castro, Ángel; Córdoba, Diego; Zheng, Fan. The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1583-1603. doi: 10.1016/j.anihpc.2020.12.005

[1] Arnol'd, V.I. Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Science, vol. 250, Springer-Verlag, New York-Berlin, 1983 (translated from the Russian by Joseph Szücs, translation edited by Mark Levi) | MR | Zbl

[2] Buckmaster, T.; Shkoller, S.; Vicol, V. Nonuniqueness of weak solutions to the SQG equation, Commun. Pure Appl. Math., Volume 72 (2019) no. 9, pp. 1809-1874 | MR | Zbl | DOI

[3] Castro, A.; Córdoba, D. Infinite energy solutions of the surface quasi-geostrophic equation, Adv. Math., Volume 225 (2010) no. 4, pp. 1820-1829 | MR | Zbl | DOI

[4] Castro, A.; Córdoba, D.; Gómez-Serrano, J. Global smooth solutions for the inviscid SQG equation, Mem. Am. Math. Soc., Volume 266 (2020), p. 1292 | MR | Zbl

[5] Constantin, P. Geometric statistics in turbulence, SIAM Rev., Volume 36 (1994) no. 1, pp. 73-98 | MR | Zbl | DOI

[6] Constantin, P.; Lai, M.-C.; Sharma, R.; Tseng, Y.-H.; Wu, J. New numerical results for the surface quasi-geostrophic equation, J. Sci. Comput., Volume 50 (2012) no. 1, pp. 1-28 | MR | Zbl | DOI

[7] Constantin, P.; Majda, A.J.; Tabak, E. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, Volume 7 (1994) no. 6, pp. 1495-1533 | MR | Zbl | DOI

[8] Constantin, P.; Nguyen, H.Q. Global weak solutions for SQG in bounded domains, Commun. Pure Appl. Math., Volume 71 (2018) no. 11, pp. 2323-2333 | MR | Zbl | DOI

[9] Constantin, P.; Nie, Q.; Schörghofer, N. Nonsingular surface quasi-geostrophic flow, Phys. Lett. A, Volume 241 (1998) no. 3, pp. 168-172 | MR | Zbl | DOI

[10] Córdoba, D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. Math. (2), Volume 148 (1998) no. 3, pp. 1135-1152 | MR | Zbl | DOI

[11] Córdoba, D.; Fefferman, C. Growth of solutions for QG and 2D Euler equations, J. Am. Math. Soc., Volume 15 (2002) no. 3, pp. 665-670 | MR | Zbl | DOI

[12] Córdoba, D.; Gómez-Serrano, J.; Ionescu, A.D. Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1211-1251 | MR | Zbl | DOI

[13] Crandall, M.G.; Rabinowitz, P.H. Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340 | MR | Zbl | DOI

[14] Dritschel, D.G. An exact steadily rotating surface quasi-geostrophic elliptical vortex, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 4–5, pp. 368-376 | MR | Zbl | DOI

[15] Elgindi, T.M.; Jeong, I.-J. Symmetries and critical phenomena in fluids, Commun. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 257-316 | MR | Zbl | DOI

[16] Friedlander, S.; Shvydkoy, R. The unstable spectrum of the surface quasi-geostrophic equation, J. Math. Fluid Mech., Volume 7 (2005) no. suppl. 1, p. S81-S93 | MR | Zbl | DOI

[17] Gancedo, F.; Patel, N. On the Local Existence and Blow-up for Generalized sqg Patches, 2018

[18] Gravejat, P.; Smets, D. Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation, Int. Math. Res. Not., Volume 6 (2019), pp. 1744-1757 | MR | Zbl | DOI

[19] Held, I.M.; Pierrehumbert, R.T.; Garner, S.T.; Swanson, K.L. Surface quasi-geostrophic dynamics, J. Fluid Mech., Volume 282 (1995), pp. 1-20 | MR | Zbl | DOI

[20] Hunter, J.K.; Shu, J.; Zhang, Q. Global Solutions of a Surface Quasi-Geostrophic Front Equation, 2018

[21] Hunter, J.K.; Shu, J.; Zhang, Q. Global Solutions for a Family of gsqg Front Equations, 2020

[22] Kappeler, T.; Pöschel, J. KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 45, Springer-Verlag, Berlin, 2003 | MR | Zbl

[23] Kiselev, A.; Nazarov, F. A simple energy pump for the surface quasi-geostrophic equation, Volume 7 (2012), pp. 175-179 | MR | Zbl

[24] Kiselev, A.; Ryzhik, L.; Yao, Y.; Zlatoš, A. Finite time singularity for the modified SQG patch equation, Ann. Math. (2), Volume 184 (2016) no. 3, pp. 909-948 | MR | Zbl | DOI

[25] Berti, R.F.M.; Pusateri, F. Birkhoff normal form and long time existence for periodic gravity water waves (preprint) | arXiv | Zbl

[26] Majda, A.J.; Bertozzi, A.L. Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[27] Marchand, F. Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces Lp or H˙1/2 , Commun. Math. Phys., Volume 277 (2008) no. 1, pp. 45-67 | MR | Zbl | DOI

[28] Ohkitani, K.; Yamada, M. Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids, Volume 9 (1997) no. 4, pp. 876-882 | MR | Zbl | DOI

[29] Pedlosky, J. Geophysical Fluid Dynamics, 1, Springer-Verlag, New York and Berlin, 1982 | DOI

[30] Resnick, S.G. Dynamical problems in non-linear advective partial differential equations, University of Chicago, Department of Mathematics, 1995 (PhD thesis) | MR

[31] Shatah, J. Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 685-696 | MR | Zbl | DOI

Cité par Sources :