Connecting planar linear chains in the spatial N -body problem
Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1115-1144
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The family of planar linear chains are found as collision-free action minimizers of the spatial N-body problem with equal masses under DN and DN×Z2-symmetry constraint and different types of topological constraints. This generalizes a previous result by the author in [32] for the planar N-body problem. In particular, the monotone constraints required in [32] are proven to be unnecessary, as it will be implied by the action minimization property.

For each type of topological constraints, by considering the corresponding action minimization problem in a coordinate frame rotating around the vertical axis at a constant angular velocity ω, we find an entire family of simple choreographies (seen in the rotating frame), as ω changes from 0 to N. Such a family starts from one planar linear chain and ends at another (seen in the original non-rotating frame). The action minimizer is collision-free, when ω=0 or N, but may contain collision for 0<ω<N. However it can only contain binary collisions and the corresponding collision solutions are C0 block-regularizable.

These families of solutions can be seen as a generalization of Marchal's P12 family for N=3 to arbitrary N3. In particular, for certain types of topological constraints, based on results from [3] and [7], we show that when ω belongs to some sub-intervals of [0,N], the corresponding minimizer must be a rotating regular N-gon contained in the horizontal plane.

DOI : 10.1016/j.anihpc.2020.10.004
Keywords: N-body problem, Celestial mechanics, Variational method

Yu, Guowei 1

1 Chern Institute of Mathematics and LPMC, Nankai University, Tianjin, 300071, China
@article{AIHPC_2021__38_4_1115_0,
     author = {Yu, Guowei},
     title = {Connecting planar linear chains in the spatial $N$-body problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1115--1144},
     year = {2021},
     publisher = {Elsevier},
     volume = {38},
     number = {4},
     doi = {10.1016/j.anihpc.2020.10.004},
     mrnumber = {4266237},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.10.004/}
}
TY  - JOUR
AU  - Yu, Guowei
TI  - Connecting planar linear chains in the spatial $N$-body problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1115
EP  - 1144
VL  - 38
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2020.10.004/
DO  - 10.1016/j.anihpc.2020.10.004
LA  - en
ID  - AIHPC_2021__38_4_1115_0
ER  - 
%0 Journal Article
%A Yu, Guowei
%T Connecting planar linear chains in the spatial $N$-body problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1115-1144
%V 38
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2020.10.004/
%R 10.1016/j.anihpc.2020.10.004
%G en
%F AIHPC_2021__38_4_1115_0
Yu, Guowei. Connecting planar linear chains in the spatial $N$-body problem. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1115-1144. doi: 10.1016/j.anihpc.2020.10.004

[1] Arioli, G.; Barutello, V.; Terracini, S. A new branch of mountain pass solutions for the choreographical 3-body problem, Commun. Math. Phys., Volume 268 (2006) no. 2, pp. 439-463 | MR | Zbl | DOI

[2] Barutello, V.; Ferrario, D.L.; Terracini, S. Symmetry groups of the planar three-body problem and action-minimizing trajectories, Arch. Ration. Mech. Anal., Volume 190 (2008) no. 2, pp. 189-226 | MR | Zbl | DOI

[3] Barutello, V.; Terracini, S. Action minimizing orbits in the n -body problem with simple choreography constraint, Nonlinearity, Volume 17 (2004) no. 6, pp. 2015-2039 | MR | Zbl | DOI

[4] Chen, K.-C. Removing collision singularities from action minimizers for the N -body problem with free boundaries, Arch. Ration. Mech. Anal., Volume 181 (2006) no. 2, pp. 311-331 | MR | Zbl | DOI

[5] Chenciner, A. Action minimizing solutions of the Newtonian n -body problem: from homology to symmetry, Beijing, 2002, Higher Ed. Press, Beijing (2002), pp. 279-294 | MR | Zbl

[6] Chenciner, A. Are there perverse choreographies?, New Advances in Celestial Mechanics and Hamiltonian Systems, Kluwer/Plenum, New York, 2004, pp. 63-76 | MR | DOI

[7] Chenciner, A.; Féjoz, J. Unchained polygons and the N -body problem, Regul. Chaotic Dyn., Volume 14 (2009) no. 1, pp. 64-115 | MR | Zbl | DOI

[8] Chenciner, A.; Féjoz, J.; Montgomery, R. Rotating eights. I. The three Γi families, Nonlinearity, Volume 18 (2005) no. 3, pp. 1407-1424 | MR | Zbl | DOI

[9] Chenciner, A.; Gerver, J.; Montgomery, R.; Simó, C. Simple choreographic motions of N bodies: a preliminary study, Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 287-308 | MR | Zbl | DOI

[10] Chenciner, A.; Montgomery, R. A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. Math. (2), Volume 152 (2000) no. 3, pp. 881-901 | MR | Zbl | DOI

[11] ElBialy, M.S. The flow of the N-body problem near a simultaneous-binary-collision singularity and integrals of motion on the collision manifold, Arch. Ration. Mech. Anal., Volume 134 (1996) no. 4, pp. 303-340 | MR | Zbl | DOI

[12] Ferrario, D.L. Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space, Arch. Ration. Mech. Anal., Volume 179 (2006) no. 3, pp. 389-412 | MR | Zbl | DOI

[13] Ferrario, D.L.; Terracini, S. On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., Volume 155 (2004) no. 2, pp. 305-362 | MR | Zbl | DOI

[14] Fusco, G.; Gronchi, G.F.; Negrini, P. Platonic polyhedra, topological constraints and periodic solutions of the classical N -body problem, Invent. Math., Volume 185 (2011) no. 2, pp. 283-332 | MR | Zbl | DOI

[15] Gordon, W.B. A minimizing property of Keplerian orbits, Am. J. Math., Volume 99 (1977) no. 5, pp. 961-971 | MR | Zbl | DOI

[16] Kustaanheimo, P.; Stiefel, E. Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., Volume 218 (1965), pp. 204-219 | MR | Zbl | DOI

[17] Marchal, C. The family P12 of the three-body problem—the simplest family of periodic orbits, with twelve symmetries per period, Badhofgastein, 2000 (Celest. Mech. Dyn. Astron.), Volume 78 (2001) no. 1–4, pp. 279-298 | MR | Zbl

[18] Martínez, R.; Simó, C. The degree of differentiability of the regularization of simultaneous binary collisions in some N -body problems, Nonlinearity, Volume 13 (2000) no. 6, pp. 2107-2130 | MR | Zbl | DOI

[19] Mateus, E.; Venturelli, A.; Vidal, C. Quasiperiodic collision solutions in the spatial isosceles three-body problem with rotating axis of symmetry, Arch. Ration. Mech. Anal., Volume 210 (2013) no. 1, pp. 165-176 | MR | Zbl | DOI

[20] McGehee, R. Triple collision in the collinear three-body problem, Invent. Math., Volume 27 (1974), pp. 191-227 | MR | Zbl | DOI

[21] Montgomery, R. Figure 8s with three bodies http://people.ucsc.edu/~rmont/Nbdy.html

[22] Montgomery, R. Action spectrum and collisions in the planar three-body problem, Evanston, IL, 1999 (Contemp. Math.), Volume vol. 292, Amer. Math. Soc., Providence, RI (2002), pp. 173-184 | MR | Zbl | DOI

[23] Palais, R.S. The principle of symmetric criticality, Commun. Math. Phys., Volume 69 (1979) no. 1, pp. 19-30 | MR | Zbl | DOI

[24] Shibayama, M. Minimizing periodic orbits with regularizable collisions in the n -body problem, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 3, pp. 821-841 | MR | Zbl | DOI

[25] Shibayama, M. Variational proof of the existence of the super-eight orbit in the four-body problem, Arch. Ration. Mech. Anal., Volume 214 (2014) no. 1, pp. 77-98 | MR | Zbl | DOI

[26] Simó, C. New families of solutions in N -body problems, Barcelona, 2000 (Progr. Math.), Volume vol. 201, Birkhäuser, Basel (2001), pp. 101-115 | MR | Zbl | DOI

[27] Simó, C.; Lacomba, E.A. Regularization of simultaneous binary collisions in the n -body problem, J. Differ. Equ., Volume 98 (1992) no. 2, pp. 241-259 | MR | Zbl | DOI

[28] Venturelli, A. Une caractérisation variationnelle des solutions de Lagrange du problème plan des trois corps, C. R. Acad. Sci., Sér. 1 Math., Volume 332 (2001) no. 7, pp. 641-644 | MR | Zbl

[29] Venturelli, A. Application de la Minimisation de L'action au Problème des N Corps dans le plan et dans L'espace, Université Denis Diderot in Paris, 2002 (PhD thesis)

[30] Yu, G. Spatial double choreographies of the Newtonian 2 n -body problem, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 1, pp. 187-229 | MR | DOI

[31] Yu, G. Shape space figure-8 solution of three body problem with two equal masses, Nonlinearity, Volume 30 (2017) no. 6, pp. 2279-2307 | MR | DOI

[32] Yu, G. Simple choreographies of the planar Newtonian N -body problem, Arch. Ration. Mech. Anal., Volume 225 (2017) no. 2, pp. 901-935 | MR | DOI

Cité par Sources :