We consider the logarithmic Schrödinger equation (logNLS) in the focusing regime. For this equation, Gaussian initial data remains Gaussian. In particular, the Gausson - a time-independent Gaussian function - is an orbitally stable solution. In this paper, we construct multi-solitons (or multi-Gaussons) for logNLS, with estimates in . We also construct solutions to logNLS behaving (in ) like a sum of N Gaussian solutions with different speeds (which we call multi-gaussian). In both cases, the convergence (as ) is faster than exponential. We also prove a rigidity result on these constructed multi-gaussians and multi-solitons, showing that they are the only ones with such a convergence.
On considère l'équation de Schrödinger logarithmique (logNLS) en régime focalisant. Pour cette équation, les données initiales gaussiennes restent gaussiennes. En particulier, le Gausson - une fonction gaussienne indépendante du temps - est une solution orbitalement stable. Dans cet article, nous construisons des multi-solitons (ou multi-Gaussons) pour logNLS, avec estimées dans . Nous construisons également des solutions à logNLS se comportant (dans ) comme une somme de N solutions gaussiennes avec différentes vitesses (que nous appelons multi-gaussiennes). Pour chaque cas, la convergence (pour ) est plus rapide qu'exponentielle. Nous prouvons également un résultat de rigidité sur ces multi-gaussiennes et multi-solitons construits, en montrant que ce sont les seuls avec une telle convergence.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.09.002
Ferriere, Guillaume 1
@article{AIHPC_2021__38_3_841_0,
author = {Ferriere, Guillaume},
title = {Existence of multi-solitons for the focusing {Logarithmic} {Non-Linear} {Schr\"odinger} {Equation}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {841--875},
year = {2021},
publisher = {Elsevier},
volume = {38},
number = {3},
doi = {10.1016/j.anihpc.2020.09.002},
mrnumber = {4227054},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.09.002/}
}
TY - JOUR AU - Ferriere, Guillaume TI - Existence of multi-solitons for the focusing Logarithmic Non-Linear Schrödinger Equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 841 EP - 875 VL - 38 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2020.09.002/ DO - 10.1016/j.anihpc.2020.09.002 LA - en ID - AIHPC_2021__38_3_841_0 ER -
%0 Journal Article %A Ferriere, Guillaume %T Existence of multi-solitons for the focusing Logarithmic Non-Linear Schrödinger Equation %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 841-875 %V 38 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2020.09.002/ %R 10.1016/j.anihpc.2020.09.002 %G en %F AIHPC_2021__38_3_841_0
Ferriere, Guillaume. Existence of multi-solitons for the focusing Logarithmic Non-Linear Schrödinger Equation. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 841-875. doi: 10.1016/j.anihpc.2020.09.002
[1] Orbital stability of Gausson solutions to logarithmic Schrödinger equations, Electron. J. Differ. Equ. (2016) | MR
[2] Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation, SIAM J. Numer. Anal., Volume 57 (2019) no. 2, pp. 657-680 | MR | DOI
[3] Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris, Ser. I, Volume 297 (1983), pp. 307-310 | MR | Zbl
[4] Nonlinear scalar field equations. II: Existence of infinitely many solutions, Arch. Ration. Mech. Anal., Volume 82 (1983), pp. 347-375 | MR | Zbl | DOI
[5] Nonlinear wave mechanics, Ann. Phys., Volume 100 (1976) no. 1–2, pp. 62-93 | MR | DOI
[6] Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3), Volume 68 (2003) no. 3 | MR | DOI
[7] Universal dynamics for the defocusing logarithmic Schrodinger equation, Duke Math. J., Volume 167 (2018) no. 9, pp. 1761-1801 | MR | DOI
[8] Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., Volume 7 (1983) no. 10, pp. 1127-1140 | MR | Zbl | DOI
[9] Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2003 | MR | Zbl
[10] Equations d'évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse (5), Volume II (1980), pp. 21-55 | MR | Zbl | Numdam | DOI
[11] On the soliton resolution for equivariant wave maps to the sphere, Commun. Pure Appl. Math., Volume 68 (2015) no. 11, pp. 1946-2004 | MR | DOI
[12] High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl. (9), Volume 96 (2011) no. 2, pp. 135-166 | MR | Zbl | DOI
[13] Multi-travelling waves for the nonlinear Klein-Gordon equation, Trans. Am. Math. Soc., Volume 370 (2018) no. 10, pp. 7461-7487 | MR | DOI
[14] Construction of multi-soliton solutions for the -supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302 | MR | Zbl | DOI
[15] Multi-solitons for nonlinear Klein-Gordon equations, Forum Math. Sigma, Volume 2 (2014) | MR | Zbl | DOI
[16] On the logarithmic Schrödinger equation, Commun. Contemp. Math., Volume 16 (2014) no. 2 | MR | Zbl | DOI
[17] Logarithmic Schrödinger-like equation as a model for magma transport, Europhys. Lett., Volume 63 ( Aug 2003 ) no. 3, pp. 472-475 | DOI
[18] Classification of the radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., Volume 1 (2013) no. 1, pp. 75-144 | MR | Zbl | DOI
[19] The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci., Volume 5 (1983), pp. 97-116 | MR | Zbl | DOI
[20] Convergence rate in Wasserstein distance and semiclassical limit for the defocusing logarithmic Schrödinger equation, Anal. PDE (2020) (to appear) | arXiv | MR
[21] The focusing logarithmic Schrödinger equation: analysis of breathers and nonlinear superposition, Discrete Contin. Dyn. Syst., Volume 40 ( Nov 2020 ) no. 11 | MR | DOI
[22] Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., Volume 74 (1987), pp. 160-197 | MR | Zbl | DOI
[23] Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., Volume 94 (1990) no. 2, pp. 308-348 | MR | Zbl | DOI
[24] Global solvability of the 3D logarithmic Schrödinger equation, Nonlinear Anal., Real World Appl., Volume 11 (2010) no. 1, pp. 79-87 | MR | Zbl | DOI
[25] Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev. A, Volume 32 ( Aug 1985 ), pp. 1201-1204 | DOI
[26] General properties of Gausson-conserving descriptions of quantal damped motion, Phys. A, Stat. Mech. Appl., Volume 105 (1981) no. 1, pp. 130-146 | MR | DOI
[27] Unified model for partially coherent solitons in logarithmically nonlinear media, Phys. Rev. E, Volume 61 ( Mar 2000 ), pp. 3122-3126 | DOI
[28] Standing waves in nonlinear Schrödinger equations, Berlin, Germany, 2007–2009, Walter de Gruyter, Berlin (2009), pp. 151-192 | MR | Zbl
[29] Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Am. J. Math., Volume 127 (2005) no. 5, pp. 1103-1140 | MR | Zbl | DOI
[30] Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 849-864 | MR | Zbl | Numdam | DOI
[31] Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 347-373 | MR | Zbl | DOI
[32] Stability in of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006) no. 3, pp. 405-466 | MR | Zbl | DOI
[33] Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Commun. Math. Phys., Volume 129 (1990) no. 2, pp. 223-240 | MR | Zbl | DOI
[34] Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978 | MR | Zbl
[35] Asymptotic Analysis of Soliton Problems. An Inverse Scattering Approach, vol. 1232, Springer, Cham, 1986 | MR | Zbl
[36] Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation, Arch. Ration. Mech. Anal., Volume 222 (2016) no. 3, pp. 1581-1600 | MR | DOI
[37] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491 | MR | Zbl | DOI
[38] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51-67 | MR | Zbl | DOI
[39] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Èksp. Teor. Fiz., Volume 61 (1971) no. 1, pp. 118-134 | MR
Cité par Sources :





