We construct infinitely many incompressible Sobolev vector fields on the periodic domain for which uniqueness of solutions to the transport equation fails in the class of densities , provided . The same result applies to the transport-diffusion equation, if, in addition, .
Modena, Stefano 1 ; Sattig, Gabriel 2
@article{AIHPC_2020__37_5_1075_0,
author = {Modena, Stefano and Sattig, Gabriel},
title = {Convex integration solutions to the transport equation with full dimensional concentration},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1075--1108},
year = {2020},
publisher = {Elsevier},
volume = {37},
number = {5},
doi = {10.1016/j.anihpc.2020.03.002},
mrnumber = {4138227},
zbl = {1458.35363},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.03.002/}
}
TY - JOUR AU - Modena, Stefano AU - Sattig, Gabriel TI - Convex integration solutions to the transport equation with full dimensional concentration JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1075 EP - 1108 VL - 37 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2020.03.002/ DO - 10.1016/j.anihpc.2020.03.002 LA - en ID - AIHPC_2020__37_5_1075_0 ER -
%0 Journal Article %A Modena, Stefano %A Sattig, Gabriel %T Convex integration solutions to the transport equation with full dimensional concentration %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1075-1108 %V 37 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2020.03.002/ %R 10.1016/j.anihpc.2020.03.002 %G en %F AIHPC_2020__37_5_1075_0
Modena, Stefano; Sattig, Gabriel. Convex integration solutions to the transport equation with full dimensional concentration. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1075-1108. doi: 10.1016/j.anihpc.2020.03.002
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227–260 | MR | Zbl | DOI
[2] Well posedness of ODE's and continuity equations with nonsmooth vector fields, and applications, Rev. Mat. Complut., Volume 30 (2017) no. 3, pp. 427–450 | MR | Zbl | DOI
[3] A uniqueness result for the decomposition of vector fields in , Invent. Math. (2019) | MR | Zbl
[4] Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, 2018 | arXiv
[5] Onsager's conjecture for admissible weak solutions, Commun. Pure Appl. Math., Volume 72 (2019) no. 2, pp. 229–274 | MR | Zbl | DOI
[6] Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math. (2019) | MR | Zbl | DOI
[7] Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 12, pp. 1168–1173 | MR | Zbl | DOI
[8] A directional Lipschitz extension lemma, with applications to uniqueness and Lagrangianity for the continuity equation, 2018 | arXiv
[9] Stationary and discontinuous weak solutions of the Navier-Stokes equations, 2019 | arXiv
[10] Non-uniqueness and -principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 2, pp. 471–514 | MR | Zbl | DOI
[11] Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 4, pp. 249–252 | MR | Zbl | DOI
[12] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511–547 | MR | Zbl | DOI
[13] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg, 2001 | MR | Zbl | DOI
[14] A Proof of Onsager's Conjecture, Ann. Math., Volume 188 (2018) no. 3, pp. 871–963 | MR | Zbl | DOI
[15] Non-uniqueness of Weak Solutions to Hyperviscous Navier-Stokes Equations – On Sharpness of J.-L. Lions Exponent, 2018 | arXiv | MR
[16] Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions, 2018 | arXiv | MR
[17] Non-uniqueness for the transport equation with Sobolev vector fields, Ann. PDE, Volume 4 (2018) no. 2 | MR | Zbl | DOI
[18] Non-renormalized solutions to the continuity equation, Calc. Var. Partial Differ. Equ., Volume 58 (2019), pp. 208 | MR | Zbl | DOI
[19] A quantitative theory for the continuity equation, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, Volume 34 (2017) no. 7, pp. 1837–1850 | MR | Zbl | Numdam
Cité par Sources :





