Non-uniqueness for a critical heat equation in two dimensions with singular data
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051

Nonlinear heat equations in two dimensions with singular initial data are studied. In recent works nonlinearities with exponential growth of Trudinger-Moser type have been shown to manifest critical behavior: well-posedness in the subcritical case and non-existence for certain supercritical data. In this article we propose a specific model nonlinearity with Trudinger-Moser growth for which we obtain surprisingly complete results: a) for initial data strictly below a certain singular threshold function u˜ the problem is well-posed, b) for initial data above this threshold function u˜, there exists no solution, c) for the singular initial datum u˜ there is non-uniqueness. The function u˜ is a weak stationary singular solution of the problem, and we show that there exists also a regularizing classical solution with the same initial datum u˜.

DOI : 10.1016/j.anihpc.2019.07.004
Keywords: Nonlinear heat equation, Singular initial data, Non-uniqueness, Non-existence

Ioku, Norisuke 1 ; Ruf, Bernhard 2 ; Terraneo, Elide 2

1 Mathematical Institute, Tohoku University, Aramaki 6-3, Sendai 980-8578, Japan
2 Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, via C. Saldini 50, Milano 20133, Italy
@article{AIHPC_2019__36_7_2027_0,
     author = {Ioku, Norisuke and Ruf, Bernhard and Terraneo, Elide},
     title = {Non-uniqueness for a critical heat equation in two dimensions with singular data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {2027--2051},
     year = {2019},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     doi = {10.1016/j.anihpc.2019.07.004},
     mrnumber = {4020532},
     zbl = {1427.35096},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/}
}
TY  - JOUR
AU  - Ioku, Norisuke
AU  - Ruf, Bernhard
AU  - Terraneo, Elide
TI  - Non-uniqueness for a critical heat equation in two dimensions with singular data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 2027
EP  - 2051
VL  - 36
IS  - 7
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/
DO  - 10.1016/j.anihpc.2019.07.004
LA  - en
ID  - AIHPC_2019__36_7_2027_0
ER  - 
%0 Journal Article
%A Ioku, Norisuke
%A Ruf, Bernhard
%A Terraneo, Elide
%T Non-uniqueness for a critical heat equation in two dimensions with singular data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 2027-2051
%V 36
%N 7
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/
%R 10.1016/j.anihpc.2019.07.004
%G en
%F AIHPC_2019__36_7_2027_0
Ioku, Norisuke; Ruf, Bernhard; Terraneo, Elide. Non-uniqueness for a critical heat equation in two dimensions with singular data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051. doi: 10.1016/j.anihpc.2019.07.004

[1] Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, Pure and Applied Mathematics, Academic Press, 2003 | MR | Zbl

[2] Bergh, J.; Löfström, J. Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin-New York, 1976 | MR | Zbl

[3] van den Berg, M. Heat equation and the principle of not feeling the boundary, Proc. R. Soc. Edinb., Sect. A, Volume 112 (1989), pp. 257–262 | MR | Zbl | DOI

[4] Brezis, H.; Cazenave, T. A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 186–212 | MR | Zbl | DOI

[5] Brezis, H.; Lions, P.L. Adv. in Math. Suppl. Stud., vol. 7A, Academic Press, New York and London (1981), pp. 263–266 | MR | Zbl

[6] Brezis, H.; Cazenave, T.; Martel, Y.; Ramiandrisoa, A. Blow up for utΔu=g(u) revisited, Adv. Differ. Equ., Volume 1 (1996), pp. 73–90 | MR | Zbl

[7] Cazenave, T. An Introduction to Semilinear Elliptic Equations, Editora do IM-UFRJ, Rio de Janeiro, 2006 (ix+193 pp.)

[8] Cazenave, T.; Weissler, F.B. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs , Nonlinear Anal., Theory Methods Appl., Volume 14 (1990), pp. 807–836 | MR | Zbl | DOI

[9] Colliander, J.; Ibrahim, S.; Majdoub, M.; Masmoudi, N. Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., Volume 6 (2009), pp. 549–575 | MR | Zbl | DOI

[10] de Figueiredo, D.G.; Ruf, B. Existence and non-existence of radial solutions for elliptic equations with critical exponent in R2 , Commun. Pure Appl. Math., Volume 48 (1995), pp. 639–655 | MR | Zbl | DOI

[11] Fujishima, Y.; Ioku, N. Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl. (9), Volume 118 (2018), pp. 128–158 | MR | Zbl | DOI

[12] Fujita, H. On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Nonlinear Funct. Anal. (1970), pp. 105–113 | MR | Zbl | DOI

[13] Furioli, G.; Kawakami, T.; Ruf, B.; Terraneo, E. Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equ., Volume 262 (2017), pp. 145–180 | MR | Zbl | DOI

[14] Galaktionov, V.A.; Vazquez, J.L. Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Commun. Pure Appl. Math., Volume 50 (1997) no. 1, pp. 1–67 | MR | Zbl | DOI

[15] Ibrahim, S.; Jrad, R.; Majdoub, M.; Saanouni, T. Local well posedness of a 2D semilinear heat equation, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014) no. 3, pp. 535–551 | MR | Zbl | DOI

[16] Ioku, N. The Cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equ., Volume 251 (2011), pp. 1172–1194 | MR | Zbl | DOI

[17] Ioku, N.; Ruf, B.; Terraneo, E. Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in RN , Math. Phys. Anal. Geom., Volume 18 (2015) no. 18, pp. 29 | MR | Zbl

[18] Majdoub, M.; Tayachi, S. Global existence and decay estimates for the heat equation with general power-exponential nonlinearities, Proc. Int. Cong. Math., Volume 2 (2018), pp. 2379–2404 (Rio de Janeiro) | MR | Zbl

[19] McLeod, K.; Troy, W.C.; Weissler, F.B. Radial solutions of Δu+f(u)=0 with prescribed numbers of zeros, J. Differ. Equ., Volume 83 (1990), pp. 368–378 | MR | Zbl | DOI

[20] Moser, J. A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077–1092 | MR | Zbl | DOI

[21] Nakamura, M.; Ozawa, T. Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., Volume 155 (1998), pp. 364–380 | MR | Zbl | DOI

[22] Ni, W.-M.; Sacks, P. Singular behavior in nonlinear parabolic equations, Trans. Am. Math. Soc., Volume 287 (1985), pp. 657–671 | MR | Zbl

[23] Pohozaev, S.I. Proc. Tech. Sci. Conf. on Adv. Sci., Research 1964–1965, Mathematics Section, The Sobolev embedding in the case pl=n (1965), pp. 158–170 (Moskov. Ènerget. Inst., Moscow, 1965)

[24] Quittner, P.; Souplet, P. Superlinear Parabolic Problems, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[25] Ruf, B.; Terraneo, E. The Cauchy problem for a semilinear heat equation with singular initial data, Prog. Nonlinear Differ. Equ. Appl., Volume 50 (2002), pp. 295–309 | MR | Zbl

[26] Souplet, P.; Weissler, F.B. Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003), pp. 213–235 | MR | Zbl | Numdam | DOI

[27] Terraneo, E. Non-uniqueness for a critical non-linear heat equation, Commun. Partial Differ. Equ., Volume 27 (2002), pp. 185–218 | MR | Zbl | DOI

[28] Trudinger, N.S. On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473–483 | MR | Zbl

[29] Weissler, F.B. Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979), pp. 277–296 | MR | Zbl | DOI

[30] Weissler, F.B. Local existence and nonexistence for semilinear parabolic equations in Lp , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | MR | Zbl | DOI

[31] Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | MR | Zbl | DOI

[32] Weissler, F.B. Nonlinear Functional Analysis and Its Applications, Proc. Symp. Pure Math., Volume 45 (1986), pp. 545–551 | MR | Zbl | DOI

Cité par Sources :