We prove, under the exterior geometric control condition, the Kato smoothing effect for solutions of an inhomogeneous and damped Schrödinger equation on exterior domains.
@article{AIHPC_2017__34_7_1759_0, author = {Aloui, Lassaad and Khenissi, Moez and Robbiano, Luc}, title = {The {Kato} smoothing effect for regularized {Schr\"odinger} equations in exterior domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1759--1792}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2016.12.006}, zbl = {1377.35044}, mrnumber = {3724756}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.006/} }
TY - JOUR AU - Aloui, Lassaad AU - Khenissi, Moez AU - Robbiano, Luc TI - The Kato smoothing effect for regularized Schrödinger equations in exterior domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1759 EP - 1792 VL - 34 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.006/ DO - 10.1016/j.anihpc.2016.12.006 LA - en ID - AIHPC_2017__34_7_1759_0 ER -
%0 Journal Article %A Aloui, Lassaad %A Khenissi, Moez %A Robbiano, Luc %T The Kato smoothing effect for regularized Schrödinger equations in exterior domains %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1759-1792 %V 34 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.006/ %R 10.1016/j.anihpc.2016.12.006 %G en %F AIHPC_2017__34_7_1759_0
Aloui, Lassaad; Khenissi, Moez; Robbiano, Luc. The Kato smoothing effect for regularized Schrödinger equations in exterior domains. Annales de l'I.H.P. Analyse non linéaire, Volume 34 (2017) no. 7, pp. 1759-1792. doi : 10.1016/j.anihpc.2016.12.006. https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.006/
[1] Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., Volume 59 (2008), pp. 53–62 | DOI | MR | Zbl
[2] Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptot. Anal., Volume 59 (2008), pp. 179–193 | MR | Zbl
[3] Stabilisation de l'équation des ondes dans un domaine extérieur, Rev. Mat. Iberoam., Volume 28 (2002), pp. 1–16 | MR | Zbl
[4] Stabilization of Schrödinger equation in exterior domains, ESAIM Control Optim. Calc. Var., Volume 13 (2007), pp. 570–579 | DOI | Numdam | MR | Zbl
[5] Smoothing effect for the regularized Schrödinger equation with non controlled orbits, Commun. Partial Differ. Equ., Volume 38 (2013), pp. 265–275 | DOI | MR | Zbl
[6] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024–1065 | DOI | MR | Zbl
[7] Décroissance de l'énergie locale de l'équation des ondes pour le problème exterieur, Acta Math., Volume 180 (1998), pp. 1–29 | DOI | MR
[8] Mesures semi classiques et mesures de défaut, Astérisque, Volume 245 (1997), pp. 167–195 | Numdam | MR | Zbl
[9] Semi-classical estimates for the resolvent in non trapping geometries, Int. Math. Res. Not., Volume 5 (2002), pp. 221–241 | MR | Zbl
[10] Smoothing effect for Schrödinger boundary value problems, Duke Math. J., Volume 123 (2004), pp. 403–427 | DOI | MR | Zbl
[11] On non linear Schrödinger equation in exterior domain, Ann. Inst. Henri Poincaré, Volume 21 (2004), pp. 295–318 | Numdam | MR | Zbl
[12] Local smoothing properties of dispersive equation, J. Am. Math. Soc., Volume 1 (1988), pp. 413–439 | DOI | MR | Zbl
[13] Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., Volume 254 (2006), pp. 729–749 | DOI | MR | Zbl
[14] Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., Volume 82 (1996), pp. 679–706 | MR | Zbl
[15] Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, 1996 | MR | Zbl
[16] Remarks on the Cauchy problem for Schrödinger type equations, Commun. Partial Differ. Equ., Volume 21 (1996), pp. 163–178 | MR | Zbl
[17] Smoothness of solutions for Schrödinger equations with unbounded potential, Publ. Res. Inst. Math. Sci., Kyoto Univ., Volume 41 (2005), pp. 175–221 | MR | Zbl
[18] Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1761–1794 | DOI | MR | Zbl
[19] The Analysis of Linear Partial Differential Operators, vol. III, Springer, 1985 | MR | Zbl
[20] Local energy decay for linear wave equation with localized dissipation, Funkc. Ekvacioj, Volume 48 (2005), pp. 351–366 | MR | Zbl
[21] Équation des ondes amorties dans un domaine extérieur, Bull. Soc. Math. Fr., Volume 131 (2003), pp. 211–228 | Numdam | MR | Zbl
[22] Scattering Theory, Pure and Applied Mathematics, vol. 26, Academics Press, New York, 1967 | MR | Zbl
[23] Équations des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic, The Netherlands, 1996, pp. 73–109 | DOI | MR
[24] Singularities and energy decay in acoustical scattering, Duke Math. J., Volume 46 (1979), pp. 43–59 | DOI | MR | Zbl
[25] Singularities of boundary value problems I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 593–617 | DOI | MR | Zbl
[26] Singularities of boundary value problems II, Commun. Pure Appl. Math., Volume 35 (1982), pp. 129–168 | DOI | MR | Zbl
[27] Decay of solutions of the wave equation outside non-trapping obstacles, Commun. Pure Appl. Math., Volume 30 (1977), pp. 447–508 | DOI | MR | Zbl
[28] Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation, J. Differ. Equ., Volume 148 (1998), pp. 388–406 | DOI | MR | Zbl
[29] Solution of the wave equation with localized energy, Commun. Pure Appl. Math., Volume 22 (1969), pp. 807–823 | DOI | MR | Zbl
[30] Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., Volume 24 (1974), pp. 79–86 | DOI | MR | Zbl
[31] The Kato smoothing effect for Schödinger equations with unbounded potentials in exterior domains, Int. Math. Res. Not. (2009), pp. 1636–1698 | MR | Zbl
[32] Regularity of solutions to the Schrödinger equation, Duke Math. J., Volume 55 (1987), pp. 699–715 | DOI | MR | Zbl
[33] Asymptotic Methods in Equations of Mathematical Physics, Gordon & Breach Science Publishers, New York, 1989 | MR | Zbl
[34] Schrödinger equations: pointwise convergence to the initial data, Proc. Am. Math. Soc., Volume 102 (1988), pp. 874–878 | MR | Zbl
[35] Asymptotic lower bounds for a class of Schrödinger equations, Commun. Math. Phys., Volume 279 (2008), pp. 429–453 | DOI | MR | Zbl
[36] Semiclassical estimates in asymptotically Euclidean scattering, Commun. Math. Phys., Volume 212 (2000), pp. 205–217 | MR | Zbl
[37] Scattering Theory for the d'Alembert Equation in Exterior Domains, Lecture Notes in Mathematics, vol. 442, Springer, New York, 1975 | MR | Zbl
Cited by Sources: