We prove regularity results such as interior Lipschitz regularity and boundary continuity for the Cauchy–Dirichlet problem associated to a class of parabolic equations inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ a regularization technique of viscosity-type that we find interesting in itself.
@article{AIHPC_2017__34_3_593_0, author = {Baroni, Paolo and Lindfors, Casimir}, title = {The {Cauchy{\textendash}Dirichlet} problem for a general class of parabolic equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {593--624}, publisher = {Elsevier}, volume = {34}, number = {3}, year = {2017}, doi = {10.1016/j.anihpc.2016.03.003}, mrnumber = {3633737}, zbl = {1366.35056}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2016.03.003/} }
TY - JOUR AU - Baroni, Paolo AU - Lindfors, Casimir TI - The Cauchy–Dirichlet problem for a general class of parabolic equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 593 EP - 624 VL - 34 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2016.03.003/ DO - 10.1016/j.anihpc.2016.03.003 LA - en ID - AIHPC_2017__34_3_593_0 ER -
%0 Journal Article %A Baroni, Paolo %A Lindfors, Casimir %T The Cauchy–Dirichlet problem for a general class of parabolic equations %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 593-624 %V 34 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2016.03.003/ %R 10.1016/j.anihpc.2016.03.003 %G en %F AIHPC_2017__34_3_593_0
Baroni, Paolo; Lindfors, Casimir. The Cauchy–Dirichlet problem for a general class of parabolic equations. Annales de l'I.H.P. Analyse non linéaire, Volume 34 (2017) no. 3, pp. 593-624. doi : 10.1016/j.anihpc.2016.03.003. https://www.numdam.org/articles/10.1016/j.anihpc.2016.03.003/
[1] Gradient estimates for a class of parabolic systems, Duke Math. J., Volume 136 (2007) no. 2, pp. 285–320 | DOI | MR | Zbl
[2] Regularity results for parabolic systems related to a class of non-newtonian fluids, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004) no. 1, pp. 25–60 | DOI | Numdam | MR | Zbl
[3] Riesz potential estimates for a general class of quasilinear equations, Calc. Var. Partial Differ. Equ., Volume 53 (2015) no. 3–4, pp. 803–846 | MR | Zbl
[4] Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surv. Appl. Math., vol. 3, John Wiley & Sons, Inc./Chapman & Hall, Ltd., New York/London, 1958 | MR | Zbl
[5] Interior regularity of space derivatives to an evolutionary, symmetric φ-Laplacian (preprint) | arXiv | DOI
[6] Hölder estimates of solutions of singular parabolic equations with measurable coefficients, Arch. Ration. Mech. Anal., Volume 118 (1992) no. 3, pp. 257–271 | MR | Zbl
[7] Boundedness of solutions to variational problems under general growth conditions, Commun. Partial Differ. Equ., Volume 22 (1997) no. 9–10, pp. 1629–1646 | MR | Zbl
[8] Gradient regularity for minimizers under general growth conditions, J. Reine Angew. Math. (Crelle's J.), Volume 507 (1999), pp. 15–36 | MR | Zbl
[9] Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems, J. Eur. Math. Soc., Volume 16 (2014) no. 3, pp. 571–595 | DOI | MR | Zbl
[10] Non-negative solution of generalized porous medium equations, Rev. Mat. Iberoam., Volume 2 (1986) no. 3, pp. 267–305 | MR | Zbl
[11] Nonnegative solutions of the initial-Dirichlet problem for generalized porous medium equations in cylinders, J. Am. Math. Soc., Volume 1 (1988) no. 2, pp. 401–412 | MR | Zbl
[12] Degenerate Diffusions. Initial Value Problems and Local Regularity Theory, EMS Tracts Math., vol. 1, 2007 (Zürich) | MR | Zbl
[13] Regularity for parabolic systems of Uhlenbeck type with Orlicz growth (preprint) | arXiv | DOI | MR | Zbl
[14] On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV), Volume 13 (1986) no. 3, pp. 487–535 | Numdam | MR | Zbl
[15] Degenerate Parabolic Equations, Universitext, Springer, New York, 1993 | MR | Zbl
[16] Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math., Volume 200 (2008) no. 2, pp. 181–209 | DOI | MR | Zbl
[17] Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., Volume 20 (2008), pp. 523–556 | DOI | MR | Zbl
[18] Everywhere regularity of functionals with φ-growth, Manuscr. Math., Volume 129 (2009) no. 4, pp. 449–481 | DOI | MR | Zbl
[19] Nonlinear Partial Differential Equations of Second Order, Transl. Math. Monogr., vol. 95, American Mathematical Society, Providence, RI, 1991 | MR | Zbl
[20] Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations, Acta Math., Volume 98 (1957), pp. 265–296 | DOI | MR | Zbl
[21] Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions, Commun. Pure Appl. Math., Volume 43 (1990) no. 5, pp. 673–683 | DOI | MR | Zbl
[22] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxf. Math. Monogr., 1993 (New York) | MR | Zbl
[23] Hölder continuity of a bounded weak solution of generalized parabolic p-Laplacian equations I: degenerate case, Electron. J. Differ. Equ., Volume 2015 (2015) no. 287, pp. 1–32 | MR
[24] Hölder continuity of a bounded weak solution of generalized parabolic p-Laplacian equations II: singular case, Electron. J. Differ. Equ., Volume 2015 (2015) no. 288, pp. 1–24 | MR
[25] On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal., Volume 27 (1996) no. 3, pp. 661–683 | DOI | MR | Zbl
[26] Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 7 (2008) no. 4, pp. 673–716 | Numdam | MR | Zbl
[27] Potential estimates and gradient boundedness for nonlinear parabolic systems, Rev. Mat. Iberoam., Volume 28 (2012) no. 2, pp. 535–576 | DOI | MR | Zbl
[28] The Wolff gradient bound for degenerate parabolic equations, J. Eur. Math. Soc., Volume 16 (2014) no. 4, pp. 835–892 | DOI | MR | Zbl
[29] Gradient regularity for nonlinear parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 12 (2013), pp. 755–822 | Numdam | MR | Zbl
[30] The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 311–361 | DOI | MR | Zbl
[31] Boundary and initial regularity for solutions of degenerate parabolic equations, Nonlinear Anal., Volume 20 (1993) no. 5, pp. 551–569 | DOI | MR | Zbl
[32] Hölder regularity for the gradients of solutions of degenerate parabolic systems, Nelineĭn. Granichnye Zadachi, Volume 16 (2006), pp. 69–85 | MR | Zbl
[33] C. Lindfors, Obstacle problem for a class of parabolic equations of generalized p-Laplacian type, preprint. | MR
[34] Notes on the p-Laplace equation, University of Jyväskylä, 2006 (Report 102) | MR | Zbl
[35] Theory of Orlicz Spaces, Marcel Dekker Inc., 1991 | MR | Zbl
[36] On the existence of subsonic flows of a compressible fluid, Proc. Natl. Acad. Sci. USA, Volume 38 (1952), pp. 434–438 | DOI | MR | Zbl
[37] The Porous Medium Equation, Mathematical Theory, Oxf. Math. Monogr., The Caledon Press, Oxford University Press, Oxford, 2007 | MR | Zbl
Cited by Sources: