We introduce a method to compare solutions of different equations in different domains. As a consequence, we define a new kind of rearrangement which applies to solution of fully nonlinear equations , not necessarily in divergence form, in convex domains and we obtain Talenti's type results for this kind of rearrangement.
@article{AIHPC_2015__32_4_763_0,
author = {Salani, Paolo},
title = {Combination and mean width rearrangements of solutions to elliptic equations in convex sets},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {763--783},
year = {2015},
publisher = {Elsevier},
volume = {32},
number = {4},
doi = {10.1016/j.anihpc.2014.04.001},
mrnumber = {3390083},
zbl = {1321.35048},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.04.001/}
}
TY - JOUR AU - Salani, Paolo TI - Combination and mean width rearrangements of solutions to elliptic equations in convex sets JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 763 EP - 783 VL - 32 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2014.04.001/ DO - 10.1016/j.anihpc.2014.04.001 LA - en ID - AIHPC_2015__32_4_763_0 ER -
%0 Journal Article %A Salani, Paolo %T Combination and mean width rearrangements of solutions to elliptic equations in convex sets %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 763-783 %V 32 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2014.04.001/ %R 10.1016/j.anihpc.2014.04.001 %G en %F AIHPC_2015__32_4_763_0
Salani, Paolo. Combination and mean width rearrangements of solutions to elliptic equations in convex sets. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 763-783. doi: 10.1016/j.anihpc.2014.04.001
[1] , , , Convex viscosity solutions and state constraints, J. Math. Pures Appl. 76 (1997), 265 -288 | MR | Zbl
[2] , , Elliptic equations with lower-order terms and reordering, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 66 (1979), 194 -200 | MR
[3] , , , Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 37 -65 | MR | EuDML | Zbl | Numdam
[4] , , , , Comparison results for solutions of elliptic problems via symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16 (1999), 167 -188 | MR | EuDML | Zbl | Numdam
[5] , , Power concavity for solutions of nonlinear elliptic problems in convex domains, , et al. (ed.), Geometric Properties for Parabolic and Elliptic PDEs, Springer INdAM Ser. vol. 2 (2013), 35 -48 | MR | Zbl
[6] , Convex set functions in d-space, Period. Math. Hung. 6 (1975), 111 -136 | MR | Zbl
[7] , Capacitary inequalities of the Brunn–Minkowski type, Math. Ann. 263 (1983), 179 -184 | MR | EuDML | Zbl
[8] , , On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (1976), 366 -389 | MR | Zbl
[9] , , Fully Nonlinear Elliptic Equations, Colloq. Publ. – Am. Math. Soc. vol. 43 , Am. Math. Soc., Providence, RI (1995) | MR | Zbl
[10] , Brunn–Minkowski inequalities for variational functionals and related problems, Adv. Math. 194 (2005), 105 -140 | MR | Zbl
[11] , , The Brunn–Minkowski inequality for p-capacity of convex bodies, Math. Ann. 327 (2003), 459 -479 | MR | Zbl
[12] , , , Brunn–Minkowski inequalities for two functionals involving the p-Laplace operator, Appl. Anal. 85 (2006), 45 -66 | MR | Zbl
[13] , , , User's guide to viscosity solution of second order elliptic PDE, Bull. Am. Math. Soc. 27 (1992), 1 -67 | MR
[14] , , Convexity of level sets for solutions to nonlinear elliptic problems in convex rings, Electron. J. Differ. Equ. 124 (2006) | MR | EuDML | Zbl
[15] , , Remarks on a Finsler–Laplacian, Proc. Am. Math. Soc. 137 (2009), 247 -253 | MR | Zbl
[16] , The Brunn–Minkowski inequality, Bull. Am. Math. Soc. 39 (2002), 355 -405 | MR | Zbl
[17] , , , Inequalities, Cambridge University Press, Cambridge (1959) | MR | Zbl
[18] , , Parabolic quasi-concavity for solutions to parabolic problems in convex rings, Math. Nachr. 283 (2010), 1526 -1548 | MR | Zbl
[19] , , Parabolic power concavity and parabolic boundary value problems, Math. Ann. 358 (2014), 1091 -1117 | MR | Zbl
[20] , Geometrical properties of level sets of solutions to elliptic problems, Nonlinear Functional Analysis and Its Applications, Berkeley, CA, 1983, Proc. Symp. Pure Math. vol. 45, Part 2 , Am. Math. Soc., Providence, RI (1986), 25 -36 | MR
[21] , Rearrangements and Convexity of Level Sets in P.D.E., Lect. Notes Math. vol. 1150 , Springer, Berlin (1985) | MR
[22] , A remark on N. Korevaar's maximum principle, Math. Methods Appl. Sci. 8 (1986), 93 -101 | MR | Zbl
[23] , Power concavity and boundary value problems, Indiana Univ. Math. J. 34 (1985), 687 -704 | MR | Zbl
[24] , A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs vol. 13 , Mathematical Society of Japan, Tokyo (2004) | MR | Zbl
[25] , Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 32 (1983), 603 -614 | MR | Zbl
[26] , Concavity maximum principle for viscosity solutions of singular equations, Nonlinear Differ. Equ. Appl. 17 (2010), 601 -618 | MR | Zbl
[27] , , Parabolic approach to nonlinear elliptic eigenvalue problems, Adv. Math. 219 (2008), 2006 -2028 | MR | Zbl
[28] , , , A Brunn–Minkowski inequality for the Hessian eigenvalue in three-dimensional convex domain, Adv. Math. 225 (2010), 1616 -1633 | MR | Zbl
[29] , , The convexity of solution of a class Hessian equation in bounded convex domain in , J. Funct. Anal. 255 (2008), 1713 -1723 | MR | Zbl
[30] , The solution of the Dirichlet problem for the equation in a convex region, Mat. Zametki 9 (1971), 89 -92 , Math. Notes 9 (1971), 52 -53 | MR | Zbl
[31] , , Isoperimetric Inequalities in Mathematical Physics, Ann. Math. Stud. vol. 27 , Princeton University Press, Princeton, NJ (1951) | MR | Zbl
[32] , Operatori Ellittici Estremanti, Ann. Mat. Pura Appl. (4) 72 (1966), 141 -170 | MR | Zbl
[33] , Convex Analysis, Princeton Math. Ser. vol. 28 , Princeton University Press, Princeton, NJ (1970) | MR | Zbl
[34] , Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 14 (1987), 403 -421 | MR | EuDML | Zbl | Numdam
[35] , A Brunn–Minkowski inequality for the Monge–Ampère eigenvalue, Adv. Math. 194 (2005), 67 -86 | MR | Zbl
[36] , Convexity of solutions and Brunn–Minkowski inequalities for Hessian equations in , Adv. Math. 229 (2012), 1924 -1948 | MR | Zbl
[37] , Convex Bodies: The Brunn–Minkowski Theory, Encycl. Math. Appl. vol. 44 , Cambridge University Press, Cambridge (1993) | MR | Zbl
[38] , The operation of infimal convolution, Diss. Math. 352 (1996) | MR | EuDML | Zbl
[39] , Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 3 (1976), 697 -718 | MR | EuDML | Zbl | Numdam
[40] , Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. (4) 120 (1979), 160 -184 | MR | Zbl
[41] , , A symmetrization result for elliptic equations with lower-order terms, Ann. Fac. Sci. Toulouse 7 (1985), 137 -150 | MR | EuDML | Zbl | Numdam
[42] , On symmetrization and Hessian equation, J. Anal. Math. 25 (1989), 94 -106 | MR | Zbl
[43] , , A Brunn–Minkowski inequality for a Finsler–Laplacian, Analysis (Munich) 31 (2011), 103 -115 | MR | Zbl
[44] , Power convexity of a class of elliptic equations involving the Hessian operator in a 3-dimensional bounded convex domain, Nonlinear Anal. 84 (2013), 29 -38 | MR | Zbl
Cité par Sources :





