We obtain results for the following question where and are integers. QuestionFor which continuous functions does there exist a continuous function such that every nonnegative solution of
Nous obtenons des résultats pour la question suivante, avec et entiers. QuestionPour quelles fonctions continues existe-t-il une fonction continue telle que chaque solution non-negative de
Keywords: Isolated singularity, Polyharmonic, Blow-up, Pointwise bound
@article{AIHPC_2013__30_6_1069_0,
author = {Taliaferro, Steven D.},
title = {Pointwise bounds and blow-up for nonlinear polyharmonic inequalities},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1069--1096},
year = {2013},
publisher = {Elsevier},
volume = {30},
number = {6},
doi = {10.1016/j.anihpc.2012.12.011},
mrnumber = {3132417},
zbl = {1286.35278},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.011/}
}
TY - JOUR AU - Taliaferro, Steven D. TI - Pointwise bounds and blow-up for nonlinear polyharmonic inequalities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 1069 EP - 1096 VL - 30 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.011/ DO - 10.1016/j.anihpc.2012.12.011 LA - en ID - AIHPC_2013__30_6_1069_0 ER -
%0 Journal Article %A Taliaferro, Steven D. %T Pointwise bounds and blow-up for nonlinear polyharmonic inequalities %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 1069-1096 %V 30 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.011/ %R 10.1016/j.anihpc.2012.12.011 %G en %F AIHPC_2013__30_6_1069_0
Taliaferro, Steven D. Pointwise bounds and blow-up for nonlinear polyharmonic inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 1069-1096. doi: 10.1016/j.anihpc.2012.12.011
[1] , , Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equations 36 (2011), 2011-2047 | MR | Zbl
[2] , , , Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math. 76 (2008), 27-67 | MR | Zbl
[3] , , , Isolated singularities of polyharmonic equations, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 257-294 | MR | Zbl
[4] , , Nonlinear biharmonic equations with negative exponents, J. Differential Equations 246 (2009), 216-234 | MR | Zbl
[5] , , , Removability of sets for sub-polyharmonic functions, Hiroshima Math. J. 33 (2003), 31-42 | MR | Zbl
[6] , , Isolated singularities of super-polyharmonic functions, Hokkaido Math. J. 33 (2004), 675-695 | MR | Zbl
[7] , , , Polyharmonic Boundary Value Problems, Springer (2010) | MR
[8] , , , Isolated singularities of polyharmonic inequalities, J. Funct. Anal. 261 (2011), 660-680 | MR | Zbl
[9] , , Elliptic Partial Differential Equations of Second Order, Springer (1983) | MR | Zbl
[10] , , Liouville-type theorems for polyharmonic equations in and in , Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 339-359 | MR | Zbl
[11] , Removable singularity of the polyharmonic equation, Nonlinear Anal. 72 (2010), 624-627 | MR | Zbl
[12] , , Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differential Equations 37 (2003) | MR | EuDML | Zbl
[13] , , A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems, Math. Z. 261 (2009), 805-827 | MR | Zbl
[14] , , Existence of solutions to nonlinear, subcritical higher order elliptic Dirichlet problems, J. Differential Equations 248 (2010), 1866-1878 | MR | Zbl
[15] , On the growth of superharmonic functions near an isolated singularity II, Comm. Partial Differential Equations 26 (2001), 1003-1026 | MR | Zbl
[16] , Isolated singularities on nonlinear elliptic inequalities, Indiana Univ. Math. J. 50 (2001), 1885-1897 | MR | Zbl
[17] , , Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), 207-228 | MR | Zbl
[18] , Uniqueness theorem for the entire positive solutions of biharmonic equations in , Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 651-670 | MR | Zbl
Cité par Sources :






