In this paper, we give a sharp lower bound for the first (nonzero) Neumann eigenvalue of Finsler-Laplacian in Finsler manifolds in terms of diameter, dimension, weighted Ricci curvature.
Keywords: Finsler-Laplacian, First eigenvalue, Weighted Ricci curvature, Poincaré inequality
@article{AIHPC_2013__30_6_983_0,
author = {Wang, Guofang and Xia, Chao},
title = {A sharp lower bound for the first eigenvalue on {Finsler} manifolds},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {983--996},
year = {2013},
publisher = {Elsevier},
volume = {30},
number = {6},
doi = {10.1016/j.anihpc.2012.12.008},
mrnumber = {3132412},
zbl = {1286.35179},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.008/}
}
TY - JOUR AU - Wang, Guofang AU - Xia, Chao TI - A sharp lower bound for the first eigenvalue on Finsler manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 983 EP - 996 VL - 30 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.008/ DO - 10.1016/j.anihpc.2012.12.008 LA - en ID - AIHPC_2013__30_6_983_0 ER -
%0 Journal Article %A Wang, Guofang %A Xia, Chao %T A sharp lower bound for the first eigenvalue on Finsler manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 983-996 %V 30 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.008/ %R 10.1016/j.anihpc.2012.12.008 %G en %F AIHPC_2013__30_6_983_0
Wang, Guofang; Xia, Chao. A sharp lower bound for the first eigenvalue on Finsler manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 983-996. doi: 10.1016/j.anihpc.2012.12.008
[1] , , , An Introduction to Riemann–Finsler Geometry, Springer-Verlag, New York (2000) | MR | Zbl
[2] , , , , Convex domains of Finsler and Riemannian manifolds, Calc. Var. Partial Differential Equations 40 no. 3–4 (2011), 335-356 | MR | Zbl
[3] , , Some new results on eigenvectors via dimension, diameter, and Ricci curvature, Adv. Math. 155 no. 1 (2000), 98-153 | MR | Zbl
[4] , , , Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54 (2003), 771-783 | MR | Zbl
[5] , , General formula for lower bound of the first eigenvalue on Riemannian manifolds, Sci. China Ser. A 40 no. 4 (1997), 384-394 | MR | Zbl
[6] , , Eigenvalues and eigenfunctions of metric measure manifolds, Proc. London Math. Soc. 82 (2001), 725-746 | MR | Zbl
[7] , , A remark on Zhong–Yangʼs eigenvalue estimate, Int. Math. Res. Not. no. 18 (2007) | MR
[8] , On the spectral gap for compact manifolds, J. Differential Geom. 36 no. 2 (1992), 315-330 | MR | Zbl
[9] , A lower bound for the first eigenvalue of the Laplacian on a compact manifold, Indiana Math. J. 28 (1979), 1013-1019 | MR | Zbl
[10] , , Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii (1979), Proc. Sympos. Pure Math. vol. XXXVI, Amer. Math. Soc., Providence, RI (1980)
[11] , Geometrie des groupes de transforamtions, Travaux et Recherches Mathemtiques vol. III, Dunod, Paris (1958)
[12] , , Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), 903-991 | MR | Zbl
[13] , Certain conditions for a Riemannian manifold to be a sphere, J. Math. Soc. Japan. 14 (1962), 333-340 | MR | Zbl
[14] , Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211-249 | MR | Zbl
[15] , , Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386-1433 | MR | Zbl
[16] , , Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds, arXiv:1104.5276 | MR | Zbl
[17] , , An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal. 5 (1960), 286-292 | MR | Zbl
[18] Z. Qian, H.-C. Zhang, X.-P. Zhu, Sharp Spectral Gap and Li–Yauʼs Estimate on Alexandrov Spaces, Math. Z., http://dx.doi.org/10.1007/s00209-012-1049-1.
[19] , Lectures on Finsler Geometry, World Scientific Publishing Co., Singapore (2001) | MR | Zbl
[20] , On the geometry of metric measure spaces. I, Acta Math. 196 (2006), 65-131 | MR | Zbl
[21] , , An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math. 258 (2012), 305-326 | MR | Zbl
[22] , , Comparison theorems in Finsler geometry and their applications, Math. Ann. 337 (2007), 177-196 | MR | Zbl
[23] , Optimal Transport, Old and New, Springer-Verlag (2009) | MR | Zbl
[24] , , On the estimate of the first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27 no. 12 (1984), 1265-1273 | MR | Zbl
Cité par Sources :





