We study conformal metrics on with constant Q-curvature (notice that is the Q-curvature of ) and finite volume. When we show that there exists such that for any there is a conformal metric on with and . This is in sharp contrast with the four-dimensional case, treated by C.-S. Lin. We also prove that when m is odd and greater than 1, there is a constant such that for every there is a conformal metric on with , . This extends a result of A. Chang and W.-X. Chen. When m is even we prove a similar result for conformal metrics of negative Q-curvature.
@article{AIHPC_2013__30_6_969_0,
author = {Martinazzi, Luca},
title = {Conformal metrics on $ {\mathbb{R}}^{2m}$ with constant {\protect\emph{Q}-curvature} and large volume},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {969--982},
year = {2013},
publisher = {Elsevier},
volume = {30},
number = {6},
doi = {10.1016/j.anihpc.2012.12.007},
mrnumber = {3132411},
zbl = {1286.53018},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.007/}
}
TY - JOUR
AU - Martinazzi, Luca
TI - Conformal metrics on $ {\mathbb{R}}^{2m}$ with constant Q-curvature and large volume
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2013
SP - 969
EP - 982
VL - 30
IS - 6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.007/
DO - 10.1016/j.anihpc.2012.12.007
LA - en
ID - AIHPC_2013__30_6_969_0
ER -
%0 Journal Article
%A Martinazzi, Luca
%T Conformal metrics on $ {\mathbb{R}}^{2m}$ with constant Q-curvature and large volume
%J Annales de l'I.H.P. Analyse non linéaire
%D 2013
%P 969-982
%V 30
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.007/
%R 10.1016/j.anihpc.2012.12.007
%G en
%F AIHPC_2013__30_6_969_0
Martinazzi, Luca. Conformal metrics on $ {\mathbb{R}}^{2m}$ with constant Q-curvature and large volume. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 969-982. doi: 10.1016/j.anihpc.2012.12.007
[1] , , , Concentration phenomena for Liouvilleʼs equation in dimension 4, J. Eur. Math. Soc. 8 (2006), 171-180 | MR | EuDML | Zbl
[2] , , Uniform estimates and blow-up behaviour for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253 | Zbl
[3] , Non-linear Elliptic Equations in Conformal Geometry, Zur. Lect. Notes Adv. Math., EMS (2004) | MR
[4] , , A note on a class of higher order conformally covariant equations, Discrete Contin. Dyn. Syst. 63 (2001), 275-281 | MR | Zbl
[5] , , On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett. 4 (1997), 91-102 | MR | Zbl
[6] , , Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 no. 3 (1991), 615-622 | MR | Zbl
[7] , , Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc. 3 (2006), 897-908 | MR | Zbl
[8] , , Q-curvature and Poincaré metrics, Math. Res. Lett. 9 (2002), 139-151 | MR | Zbl
[9] , , Ambient metric construction of Q-curvature in conformal and CR geometry, Math. Res. Lett. 10 (2003), 819-831 | MR | Zbl
[10] , , Blow-up analysis for solutions of in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270 | MR | Zbl
[11] , A classification of solutions of conformally invariant fourth order equations in , Comment. Math. Helv. 73 (1998), 206-231 | MR | Zbl
[12] , Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math. 594 (2006), 137-174 | MR | Zbl
[13] , , Q-curvature flow on , J. Differential Geom. 73 (2006), 1-44 | MR | Zbl
[14] , Classification of solutions to the higher order Liouvilleʼs equation on , Math. Z. 263 (2009), 307-329 | MR | Zbl
[15] , Conformal metrics on with constant Q-curvature, Rend. Lincei. Mat. Appl. 19 (2008), 279-292 | MR | Zbl
[16] , Concentration-compactness phenomena in higher order Liouvilleʼs equation, J. Funct. Anal. 256 (2009), 3743-3771 | MR | Zbl
[17] , Quantization for the prescribed Q-curvature equation on open domains, Commun. Contemp. Math. 13 (2011), 533-551 | MR | Zbl
[18] , Ndiaye constant Q-curvature metrics in arbitrary dimension, J. Funct. Anal. 251 no. 1 (2007), 1-58 | MR | Zbl
[19] , Concentration phenomena for a fourth order equation with exponential growth: The radial case, J. Differential Equations 231 (2006), 135-164 | MR | Zbl
[20] , Quantization effects for a fourth order equation of exponential growth in dimension four, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 531-553 | MR | Zbl
[21] , A flow approach to Nirenbergʼs problem, Duke Math. J. 128 no. 1 (2005), 19-64 | MR | Zbl
[22] , An example of a blow-up sequence for , Differential Integral Equations 5 (1992), 1111-1114 | MR | Zbl
[23] , , Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), 207-228 | MR | Zbl
[24] J. Wei, D. Ye, Nonradial solutions for a conformally invariant fourth order equation in , preprint, 2006. | MR
[25] , Uniqueness theorems for integral equations and its application, J. Funct. Anal. 247 no. 1 (2007), 95-109 | MR | Zbl
Cité par Sources :






