We show that every linearly repetitive Delone set in the Euclidean d-space , with , is equivalent, up to a bi-Lipschitz homeomorphism, to the integer lattice . In the particular case when the Delone set X in comes from a primitive substitution tiling of , we give a condition on the eigenvalues of the substitution matrix which ensures the existence of a homeomorphism with bounded displacement from X to the lattice for some positive β. This condition includes primitive Pisot substitution tilings but also concerns a much broader set of substitution tilings.
@article{AIHPC_2013__30_2_275_0,
author = {Aliste-Prieto, Jos\'e and Coronel, Daniel and Gambaudo, Jean-Marc},
title = {Linearly repetitive {Delone} sets are rectifiable},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {275--290},
year = {2013},
publisher = {Elsevier},
volume = {30},
number = {2},
doi = {10.1016/j.anihpc.2012.07.006},
mrnumber = {3035977},
zbl = {1288.52011},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.07.006/}
}
TY - JOUR AU - Aliste-Prieto, José AU - Coronel, Daniel AU - Gambaudo, Jean-Marc TI - Linearly repetitive Delone sets are rectifiable JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 275 EP - 290 VL - 30 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.07.006/ DO - 10.1016/j.anihpc.2012.07.006 LA - en ID - AIHPC_2013__30_2_275_0 ER -
%0 Journal Article %A Aliste-Prieto, José %A Coronel, Daniel %A Gambaudo, Jean-Marc %T Linearly repetitive Delone sets are rectifiable %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 275-290 %V 30 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.07.006/ %R 10.1016/j.anihpc.2012.07.006 %G en %F AIHPC_2013__30_2_275_0
Aliste-Prieto, José; Coronel, Daniel; Gambaudo, Jean-Marc. Linearly repetitive Delone sets are rectifiable. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 2, pp. 275-290. doi: 10.1016/j.anihpc.2012.07.006
[1] , , , Rapid convergence to frequency for substitution tilings of the plane, Comm. Math. Phys. 306 no. 2 (2011), 365-380 | MR | Zbl
[2] , , Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8 no. 2 (1998), 273-282 | MR | Zbl
[3] , , Rectifying separated nets, Geom. Funct. Anal. 12 no. 1 (2002), 80-92 | MR | Zbl
[4] , Algebraic theory of Penroseʼs nonperiodic tilings of the plane. I, Nederl. Akad. Wetensch. Indag. Math. 43 no. 1 (1981), 39-52 , Algebraic theory of Penroseʼs nonperiodic tilings of the plane. II, Nederl. Akad. Wetensch. Indag. Math. 43 no. 1 (1981), 53-66 | MR | Zbl
[5] D. Frettlöh, A. Garber, private communication.
[6] , Asymptotic invariants of infinite groups, Geometric Group Theory, vol. 2, Sussex, 1991, London Math. Soc. Lecture Note Ser. vol. 182, Cambridge Univ. Press, Cambridge (1993), 1-295 | MR
[7] , , Tilings and Patterns, W.H. Freeman and Company, New York (1989) | MR | Zbl
[8] , , Matrix Analysis, Cambridge University Press, Cambridge (1990) | MR
[9] , , Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems 23 no. 3 (2003), 831-867 | MR | Zbl
[10] , Uniformly spread discrete sets in , J. London Math. Soc. (2) 46 no. 1 (1992), 39-57 | MR | Zbl
[11] , Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998), 304-314 | MR | Zbl
[12] , , Characterization of planar pseudo-self-similar tilings, Discrete Comput. Geom. 26 no. 3 (2001), 289-306 | MR | Zbl
[13] , , Resolutions of the prescribed volume form equation, NoDEA 3 (1996), 323-369 | MR | Zbl
[14] , , , , Metallic phase with long range orientational order and no translational symmetry, Phys. Rev. Lett. 53 no. 20 (1984), 1951-1954
[15] , Substitution tilings and separated nets with similarities to the integer lattice, Israel J. Math. 181 no. 1 (2011), 445-460 | MR | Zbl
[16] , Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom. 20 no. 2 (1998), 265-279 | MR | Zbl
[17] , Pseudo-self-affine tilings in , Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 13 Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 326 (2005), 198-213, J. Math. Sci. (N.Y.) 140 no. 3 (2007), 452-460 | EuDML | Zbl
[18] , Geometric group theory, 2: Asymptotic invariants of finite groups by M. Gromov, Bull. Amer. Math. Soc. 33 (1996), 395-398
Cité par Sources :






