We consider the cubic nonlinear Schrödinger equation (NLS) in one space dimension, either focusing or defocusing. We prove that the solutions satisfy a priori local in time bounds in terms of the size of the initial data for . This improves earlier results of Christ, Colliander and Tao [3] and of the authors (Koch and Tataru, 2007 [13]). The new ingredients are a localization in space and local energy decay, which we hope to be of independent interest.
@article{AIHPC_2012__29_6_955_0,
author = {Koch, Herbert and Tataru, Daniel},
title = {Energy and local energy bounds for the 1-d cubic {NLS} equation in $ {H}^{-\frac{1}{4}}$},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {955--988},
year = {2012},
publisher = {Elsevier},
volume = {29},
number = {6},
doi = {10.1016/j.anihpc.2012.05.006},
zbl = {1280.35137},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.05.006/}
}
TY - JOUR
AU - Koch, Herbert
AU - Tataru, Daniel
TI - Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2012
SP - 955
EP - 988
VL - 29
IS - 6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.05.006/
DO - 10.1016/j.anihpc.2012.05.006
LA - en
ID - AIHPC_2012__29_6_955_0
ER -
%0 Journal Article
%A Koch, Herbert
%A Tataru, Daniel
%T Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 955-988
%V 29
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2012.05.006/
%R 10.1016/j.anihpc.2012.05.006
%G en
%F AIHPC_2012__29_6_955_0
Koch, Herbert; Tataru, Daniel. Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 955-988. doi: 10.1016/j.anihpc.2012.05.006
[1] , , , Self-focusing and self-trapping of intense light beams in a nonlinear medium, Zh. Eksp. Teor. Fiz. 50 (1966), 1537-1549
[2] Michael Christ, personal communication.
[3] , , , A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, arXiv:math.AP/0612457 | MR | Zbl
[4] , , , Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 no. 6 (2003), 1235-1293 | MR | Zbl
[5] , , A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 no. 2 (1993), 295-368 | MR | Zbl
[6] , Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc. 126 no. 2 (1998), 523-530 | MR | Zbl
[7] , , , Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 3 (2009), 917-941 | MR | EuDML | Zbl | Numdam
[8] , , , The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math. 52 no. 5 (1999), 613-654 | MR | Zbl
[9] , Long time behavior for semiclassical NLS, Appl. Math. Lett. 12 no. 8 (1999), 35-57 | MR | Zbl
[10] , , , Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Ann. of Math. Stud. vol. 154, Princeton University Press, Princeton, NJ (2003) | MR | Zbl
[11] , , , On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 no. 3 (2001), 617-633 | MR | Zbl
[12] , , Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 no. 2 (2005), 217-284 | MR | Zbl
[13] , , A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN 2007 no. 16 (2007) | MR | Zbl
[14] , , On the one-dimensional cubic nonlinear Schrödinger equation below , arXiv:1007.2073v2 (2010) | MR | Zbl
[15] , , Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Progr. Theoret. Phys. Suppl. 55 (1974), 284-306 | MR
[16] , Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math. vol. 106 (2006) | MR | Zbl
[17] , Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations 245 no. 1 (2008), 249-280 | MR | Zbl
Cité par Sources :






