We obtain the existence of global-in-time weak solutions for the Cauchy problem of a modified two-component Camassa–Holm equation. The global weak solution is obtained as a limit of viscous approximation. The key elements in our analysis are the Helly theorem and some a priori one-sided supernorm and space–time higher integrability estimates on the first-order derivatives of approximation solutions.
Nous obtenons lʼexistence globale en temps de solutions faibles pour le problème de Cauchy dʼune équation modifiée Camassa–Holm à deux composantes. La solution faible globale est obtenue comme une limite de par approximation visqueuse. Les éléments clé dans notre analyse sont le théorème de Helly et certaines estimations a priori de supernorme dʼun seul côté et dʼintégrabilité dans lʼespace-temps des dérivées premières des solutions approchées.
Keywords: A modified two-component Camassa–Holm equation, Well-posedness, Blow-up scenario, Strong solution, Global weak solution
@article{AIHPC_2011__28_4_623_0,
author = {Guan, Chunxia and Yin, Zhaoyang},
title = {Global weak solutions for a modified two-component {Camassa{\textendash}Holm} equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {623--641},
year = {2011},
publisher = {Elsevier},
volume = {28},
number = {4},
doi = {10.1016/j.anihpc.2011.04.003},
zbl = {1241.35159},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2011.04.003/}
}
TY - JOUR AU - Guan, Chunxia AU - Yin, Zhaoyang TI - Global weak solutions for a modified two-component Camassa–Holm equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 623 EP - 641 VL - 28 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2011.04.003/ DO - 10.1016/j.anihpc.2011.04.003 LA - en ID - AIHPC_2011__28_4_623_0 ER -
%0 Journal Article %A Guan, Chunxia %A Yin, Zhaoyang %T Global weak solutions for a modified two-component Camassa–Holm equation %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 623-641 %V 28 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2011.04.003/ %R 10.1016/j.anihpc.2011.04.003 %G en %F AIHPC_2011__28_4_623_0
Guan, Chunxia; Yin, Zhaoyang. Global weak solutions for a modified two-component Camassa–Holm equation. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 623-641. doi: 10.1016/j.anihpc.2011.04.003
[1] , Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à lʼhydrodynamique es fluides parfaits, Ann. Inst. Fourier 16 (1966), 319-361 | EuDML | Zbl | Numdam
[2] , , , Acoustic scatting and the extended Korteweg–de Vries hierarchy, Adv. Math. 140 (1998), 190-206 | Zbl
[3] , , Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 183 (2007), 215-239 | Zbl
[4] , , Global dissipative solutions of the Camassa–Holm equation, Anal. Appl. 5 (2007), 1-27 | Zbl
[5] , , An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664 | Zbl
[6] , , , A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33 | Zbl
[7] , , , A 2-component generalization of the Camassa–Holm equation and its solutions, Lett. Math. Phys. 75 (2006), 1-15 | Zbl
[8] , , , Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal. 37 (2006), 1044-1069 | Zbl
[9] , The Hamiltonian structure of the Camassa–Holm equation, Expo. Math. 15 (1997), 53-85
[10] , On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155 (1998), 352-363 | Zbl
[11] , Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), 321-362 | EuDML | Zbl | Numdam
[12] , On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. Lond. Ser. A 457 (2001), 953-970 | Zbl
[13] , The trajectories of particles in Stokes waves, Invent. Math. 166 (2006), 523-535 | Zbl
[14] , , The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal. 193 (2009), 165-186 | Zbl
[15] , , Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), 475-504 | Zbl
[16] , , Wave breaking for nonlinear nonlocal shallow water equations, Acta. Math. 181 (1998), 229-243 | Zbl
[17] , , On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z. 233 (2000), 75-91 | Zbl
[18] , , , Inverse scattering transform for the Camassa–Holm equation, Inverse Problems 22 (2006), 2197-2207 | Zbl
[19] , , Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. 44 (2007), 423-431 | Zbl
[20] , , Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175-211 | Zbl
[21] , , Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109-122 | Zbl
[22] , , A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949-982 | Zbl
[23] , , Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000), 45-61 | Zbl
[24] , , Stability of peakons, Comm. Pure Appl. Math. 53 (2000), 603-610 | Zbl
[25] , , On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A 372 (2008), 7129-7132 | Zbl
[26] , , An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York (1995) | Zbl
[27] , Model equations for nonlinear dispersive waves in compressible Mooney–Rivlin rod, Acta Mech. 127 (1998), 193-207 | MR | Zbl
[28] , A few remarks on the Camassa–Holm equation, Differential Integral Equations 14 (2001), 953-988 | MR | Zbl
[29] , , Ordinary differential equations, transport theory and Sobolev space, Invent. Math. 98 (1989), 511-547 | MR | EuDML | Zbl
[30] , , Solitons: an Introduction, Cambridge University Press, Cambridge (1989) | Zbl
[31] , , , Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst. 19 (2007), 493-513 | MR | Zbl
[32] , , Symplectic, their Bäcklund transformation and hereditary symmetries, Phys. D 4 (1981), 47-66 | MR | Zbl
[33] , , Generalized Fourier transform and perturbations to soliton equations, Discrete Contin. Dyn. Syst. Ser. B 12 (2009), 579-595 | MR | Zbl
[34] , , Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system, J. Differential Equations 248 (2010), 2003-2014 | MR | Zbl
[35] , , , Well-posedness and blow-up phenomena for a modified tow-component Camassa–Holm equation, Proceedings of the 2008–2009 Special Year in Nonlinear Partial Differential Equations, Contemp. Math. vol. 526, Amer. Math. Soc. (2010), 199-220 | Zbl
[36] , , Global conservative multipeakon solutions of the Camassa–Holm equation, J. Hyperbolic Differ. Equ. 4 (2007), 39-64 | MR | Zbl
[37] , , Global conservative solutions of the Camassa–Holm equation – A Lagrangian point of view, Comm. Partial Differential Equations 32 (2007), 1511-1549 | MR | Zbl
[38] , , Dissipative solutions for the Camassa–Holm equation, Discrete Contin. Dyn. Syst. 24 (2009), 1047-1112 | MR | Zbl
[39] , , , The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998), 1-81 | MR | Zbl
[40] , , , Singular solution of a modified two-component Camassa–Holm equation, Phys. Rev. E 79 (2009), 1-13 | MR
[41] , Theory of Functions of a Real Variable, vol. 1, Frederick Ungar Publishing Co., New York (1974) | MR
[42] , Compact sets in the space , Ann. Mat. Pura Appl. (4) 146 (1987), 65-96 | MR | Zbl
[43] , Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Lecture Notes in Math. vol. 448, Springer-Verlag, Berlin (1975), 25-70 | MR
[44] , , Commutator estimates and Navier–Stokes equations, Comm. Pure Appl. Math. 41 (1988), 203-208 | MR
[45] , Poisson brackets in hydrodynamics, Discrete Contin. Dyn. Syst. 19 (2007), 555-574 | MR | Zbl
[46] , Integrable nonlinear wave equations and possible connections to tsunami dynamics, Tsunami and Nonlinear Waves, Springer, Berlin (2007), 31-49 | MR | Zbl
[47] , , Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations 162 (2000), 27-63 | MR
[48] , Mathematical Topics in Fluid Mechanics, vol. I. Incompressible Models, Oxford Lecture Ser. Math. Appl. vol. 3, Clarendon, Oxford University Press, New York (1996)
[49] , Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983) | MR | Zbl
[50] , Linear and Nonlinear Waves, J. Wiley and Sons, New York (1980) | MR | Zbl
[51] , , On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000), 1411-1433 | MR | Zbl
[52] , Well-posedness, global existence and blowup phenomena for an integrable shallow water equation, Discrete Contin. Dyn. Syst. 10 (2004), 393-411 | MR | Zbl
Cité par Sources :





